I. Maximum Likelihood Estimation

1. Suppose you flip a coin 100 times and get 30 heads. Estimate the probability p that a single flip of the coin is a head and find 90% and 99% confidence intervals for $p \ldots$
a) directly (using \bar{x})
b) using maximum likelihood estimation
2. Suppose a hospital records the number of critical patients they get per day over the course of 10 days, and get the following data: $10,4,3,7,5,8,2,11,12,8$. Assume that the number of critical patients the hospital receives on any particular day is modeled by a Poisson distribution X with unknown parameter λ. Estimate λ using MLE.
3. Suppose X is a geometric random variable with unknown parameter p. You randomly sample X three times and get the values $5,3,8$. What is the MLE estimate for p given this data?
4. Suppose X is an exponential random variable with unknown parameter λ. You randomly sample $X 5$ times and get the values $25,30,33,27,31$. What is the MLE estimate for λ given this data?
5. Suppose X is a normal random variable with unknown mean and variance μ and σ^{2}. You randomly sample $X 4$ times and get the values $3,4,6,7$. What is the MLE estimate for μ and σ^{2} given this data?
6. For each of the above problems, determine whether the MLE estimate you obtained was biased or unbiased.
