I. Maximum Likelihood Estimation

1. Suppose you flip a coin 100 times and get 30 heads. Estimate the probability p that a single flip of the coin is a head ...
a) directly (using \bar{x})

$$
\hat{p}=\bar{x}=.3
$$

b) using maximum likelihood estimation
$L(p \mid 30)=P(30 \mid p)=\binom{100}{30} p^{30}(1-p)^{70}$. Differentiating with respect to p gives us $\frac{d}{d p} L(p \mid 30)=\binom{100}{30} p^{29}(1-p)^{69}(30(1-p)-70 p)$. The zeros of this derivative are $p=0,1, \frac{3}{10}$, and plugging these zeros in to $L(p \mid 30)$ gives us the MLE $\hat{p}=\frac{3}{10}$.
c) Find 90% and 99% confidence intervals for p.
$\hat{\sigma}=\sqrt{\hat{p}(1-\hat{p})}=.46$. The 90% confidence interval for p is $\left(\hat{p}-\frac{1.66 \hat{\sigma}}{\sqrt{100}}, \hat{p}+\frac{1.66 \hat{\sigma}}{\sqrt{100}}\right)=$ $(.22, .38)$. The 99% confidence interval for p is $\left(\hat{p}-\frac{2.58 \hat{\sigma}}{\sqrt{100}}, \hat{p}+\frac{2.58 \hat{\sigma}}{\sqrt{100}}\right)=(.18, .42)$.
2. Suppose a hospital records the number of critical patients they get per day over the course of 10 days, and get the following data: $10,4,3,7,5,8,2,11,12,8$. Assume that the number of critical patients the hospital receives on any particular day is modeled by a Poisson distribution X with unknown parameter λ. Estimate λ using MLE.
Let x_{1}, \ldots, x_{10} be the given data. Then $L\left(\hat{\lambda} \mid x_{1}, \ldots, x_{10}\right)=P\left(x_{1}, \ldots, x_{10} \mid \hat{\lambda}\right)=\prod_{i=1}^{10} P\left(x_{i} \mid \hat{\lambda}\right)=$ $\prod_{i=1}^{10} \frac{x_{i}^{\hat{\lambda}} e^{-\lambda}}{x_{i}!}$. Thus $\log L\left(\hat{\lambda} \mid x_{1}, \ldots, x_{10}\right)=-10 \hat{\lambda}+\log (\hat{\lambda})\left(x_{1}+\cdots+x_{10}\right)-\log \left(x_{1}!\right)-\cdots-\log \left(x_{10}!\right)$. Taking the derivative of this expression yields $-n+\frac{x_{1}+\cdots+x_{10}}{\hat{\lambda}}$. The only zero of this derivative is $\hat{\lambda}=\frac{x_{1}+\cdots+x_{n}}{n}=7$, which becomes our MLE estimate (you can perform the second derivative test to check that it's a maximum).
3. Suppose X is a geometric random variable with unknown parameter p. You randomly sample X three times and get the values $5,3,8$. What is the MLE estimate for p given this data?
$L(\hat{p} \mid 5,3,8)=P(5,3,8 \mid \hat{p})=P(X=5 \mid \hat{p}) P(X=3 \mid \hat{p}) P(X=8 \mid \hat{p})=(1-\hat{p})^{16} \hat{p}^{3}$. Differentiating with respect to \hat{p} yields $(3(1-\hat{p})-16 \hat{p})(1-\hat{p})^{15} \hat{p}^{2}$. This has zeros at $\hat{p}=0,1, \frac{3}{19}$. The value which maximizes likelihood is $\hat{p}=\frac{3}{19}=\frac{1}{1+\frac{5+3+8}{3}}$.
4. Suppose X is an exponential random variable with unknown parameter λ. You randomly sample $X 5$ times and get the values $25,30,33,27,31$. What is the MLE estimate for λ given this data?
$L\left(\hat{\lambda} \mid x_{1}, \ldots, x_{5}\right)=\hat{\lambda}^{5} e^{-\hat{\lambda}\left(x_{1}+\cdots+x_{5}\right)}$. Thus $\log L\left(\hat{\lambda} \mid x_{1}, \ldots, x_{5}\right)=5 \log (\lambda)-\hat{\lambda}\left(x_{1}+\cdots+x_{5}\right)$. Differentiating gives us $\frac{5}{\hat{\lambda}}-\left(x_{1}+\cdots+x_{5}\right)$ which has a single 0 at $\hat{\lambda}=\frac{5}{x_{1}+\cdots+x_{5}}$, which is the MLE.
5. Suppose X is a normal random variable with unknown mean and variance μ and σ^{2}. You randomly sample $X 4$ times and get the values $3,4,6,7$. What is the MLE estimate for μ and σ^{2} given this data?
Notice $L\left(\hat{\mu}, \hat{\sigma} \mid x_{1}, \ldots, x_{4}\right)=\prod_{i=1}^{4} \frac{1}{\hat{\sigma} \sqrt{2 \pi}} e^{-\frac{\left(x_{i}-\hat{\mu}\right)^{2}}{2 \hat{\sigma}^{2}}}$. Let's assume $\hat{\sigma}$ is a constant and find the $\hat{\mu}$ which maximizes the likelihood. We'll look at the log likelihood here:

$$
\log L\left(\hat{\mu}, \hat{\sigma} \mid x_{1}, \ldots, x_{4}\right)=\sum_{i=1}^{4}-\log (\hat{\sigma} \sqrt{2 \pi})-\frac{\left(x_{i}-\hat{\mu}\right)^{2}}{2 \hat{\sigma}^{2}}
$$

Setting the derivative with respect to $\hat{\mu}$ equal to 0 , we get $\sum_{i=1}^{4} \frac{2\left(x_{i}-\hat{\mu}\right)}{2 \hat{\sigma}^{2}}=0$, which has one solution $-\hat{\mu}=\bar{x}$. Now differentiating with respect to $\hat{\sigma}$ (after replacing $\hat{\mu}$ with \bar{x}), we get:

$$
0=\frac{-4}{\hat{\sigma}}+\sum_{i=1}^{4} \frac{\left(x_{i}-\bar{x}\right)^{2}}{\hat{\sigma}^{3}}
$$

So $\hat{\sigma}^{2}=\frac{1}{4} \sum_{i=1}^{4}\left(x_{i}-\bar{x}\right)^{2}$.
6. For each of the above problems, determine whether the MLE estimate you obtained was biased or unbiased.
The MLE estimate is unbiased except in the estimate for p in the Geometric distribution, the estimate for λ in the exponential distribution, and the estimate for σ^{2} in the normal distribution.

