Chi-Squared Hypothesis Testing

1. You roll a die 60 times and get 10 1's, 10 2's, 103 's, 2 4's, 8 5's, and 206 's. Is the die fair? Use the significance level $\alpha=0.05$.
(a) What are H_{0} and H_{1} ?

Solution:
H_{0} : The die is fair.
H_{1} : The die is not fair.
(b) Complete the following table.

value k	observed frequency n_{k}	expected frequency m_{k}	$\left(n_{k}-m_{k}\right)^{2} / m_{k}$
1	10		
2	10		
3	10		
4	2		
5	8		
6	20		

Solution:			
value k	observed frequency n_{k}	expected frequency m_{k}	$\left(n_{k}-m_{k}\right)^{2} / m_{k}$
1	10	10	0
2	10	10	0
3	10	10	0
4	2	10	6.4
5	8	10	0.4
6	20	10	10

(c) Calculate the χ^{2} statistic and determine the number of degrees of freedom.

Solution: The χ^{2} statistic is $r=0+0+0+6.4+0.4+10=16.8$. We have $6-1=5$ degrees of freedom.
(d) Draw a conclusion.

Solution:

There are two possible methods.
METHOD 1 - Using the χ^{2} table, the critical χ^{2} value is 11.07 . Thus, since $16.8>11.07$, we reject H_{0} in favor of H_{1} i.e. we conclude that the die is not fair.
METHOD 2 - Using the χ^{2} calculator, $P(R \geq 16.8) \approx 0.01$. Thus, since $0.01<0.05$, again we reject H_{0} in favor of H_{1} i.e. we conclude that the die is not fair.
2. [HW34\#1] We roll two 6 -sided dice 100 times and record the outcomes for the sum of the dice in the following table.

value	observed frequency	expected frequency
2	6	
3	10	
4	9	
5	13	
6	13	
7	12	
8	11	
9	10	
10	7	
11	5	
12	4	

Calculate the expected frequencies, given the null hypothesis H_{0} that both dice are fair. Compute the χ^{2} statistic for this data. What is the p-value? Do we have enough evidence to reject the null hypothesis?

Solution:		
value	observed frequency	expected frequency
2	6	$\frac{1}{36} \cdot 100$
3	10	$\frac{2}{36} \cdot 100$
4	9	$\frac{3}{36} \cdot 100$
5	13	$\frac{4}{36} \cdot 100$
6	13	$\frac{5}{36} \cdot 100$
7	12	$\frac{6}{36} \cdot 100$
8	11	$\frac{5}{36} \cdot 100$
9	10	$\frac{4}{36} \cdot 100$
10	7	$\frac{3}{36} \cdot 100$
11	5	$\frac{2}{36} \cdot 100$
12	4	$\frac{1}{36} \cdot 100$
$\begin{equation*} \left(6-\frac{1}{36} \cdot 100\right)^{2} \tag{4} \end{equation*}$		

Using the χ^{2} calculator, since we have $11-1=10$ degrees of freedom, the p -value is 0.3936 . Since $0.3936>0.05$, we do not have enough evidence to reject H_{0}.
3. I claim that a coin is biased so that the probability of heads is 75%. When you flip the coin 40 times, you get 25 heads and 15 tails. Do you have enough evidence to reject my claim? Use the significance level $\alpha=0.05$.

Solution:

Let H_{0} be the hypothesis that my claim is true i.e. the probability of heads is 75%. Let H_{1} be the hypothesis that my claim is false. Assuming H_{0}, the expected number of heads is $0.75 \cdot 40=30$ and the expected number of tails is $(1-0.75) \cdot 40=10$. Thus

$$
r=\frac{(25-30)^{2}}{30}+\frac{(15-10)^{2}}{10}=\frac{10}{3} .
$$

Using the χ^{2} table, since $\alpha=0.05$ and we have $2-1=1$ degree of freedom, the critical χ^{2} value is 3.84 . Thus, since $\frac{1}{3}<3.84$, we fail to reject H_{0} i.e. you do not have enough evidence to reject my claim.
4. In a sample of 160 pea plants, we observe 100 tall purple plants, 23 tall white plants, 25 short purple plants, and 12 short white plants. Let the null hypothesis H_{0} be that flower color and plant height are Mendelian traits. Let the alternative hypothesis H_{1} be that flower color and plant height are not Mendelian traits. Using the significance level $\alpha=0.05$, do we have enough evidence to reject H_{0} ? (Recall that we expect the proportion of the four possible phenotypes (TP, TW, SP, SW) to be 9:3:3:1 if flower color and plant height are Mendelian.)

Solution:		
value	observed frequency	expected frequency
TP	100	$\frac{9}{16} \cdot 160=90$
TW	23	$\frac{3}{16} \cdot 160=30$
SP	25	$\frac{3}{16} \cdot 160=30$
SW	12	$\frac{1}{16} \cdot 160=10$
$r=\frac{(100-90)^{2}}{90}+\frac{(23-30)^{2}}{30}+\frac{(25-30)^{2}}{30}+\frac{(12-10)^{2}}{10} \approx 3.98$		

Using the χ^{2} table, since $\alpha=0.05$ and we have $4-1=3$ degrees of freedom, the critical χ^{2} value is 7.81 . Thus, since $3.98<7.81$, we do not have enough evidence to reject H_{0}.

