More combinations and permutations

- 1. How many permutations of the letters ABCDEFG contain:
- (a) the string ACE?
- (b) the strings AG and FCB?
- (c) the strings AB, DC, and GE?
- (d) the strings ACB and GFE?
- 2. Ten women and eight men are on the faculty of a mathematics department at a school.
- (a) How many ways are there to select a committee of five members of the department if at least one woman must be on the committee?
- (b) How many ways are there to select a committee of five members of the department if at least one man and at least one woman must be on the committee?

Binomial coefficients

- 3. What is the coefficient of x^6y^{10} in the expansion of $(2x + 5y)^{16}$?
- 4. The row of Pascal's triangle containing the binomial coefficients $\binom{10}{k}$, $0 \le k \le 10$, is:

Use Pascal's identity to produce the row immediately preceding this row in Pascal's triangle.

- 5. Show that if n and k are integers with $1 \le k \le n$, then $\binom{n}{k} \le n^k/2^{k-1}$.
- 6*. Prove the hockeystick identity:

$$\sum_{k=0}^{r} \binom{n+k}{k} = \binom{n+r+1}{r}$$

whenever n and r are positive integers.

More counting

- 7. How many ways are there to distribute
- (a) 10 distinguishable balls into four distinguishable bins?
- (b) 10 indistinguishable balls into four distinguishable bins?
- 8. How many different combinations of pennies, nickels, dimes, quarters, and half dollars can a piggy bank contain if it has 14 coins in it?
- 9*. How many solutions are there to the inequality $x_1 + x_2 + x_3 + x_4 \le 15$, where x_1, x_2, x_3, x_4 are nonnegative integers?
- 10 (extra challenge). How many ways are there to distribute 10 distinguishable objects into four distinguishable boxes so that the boxes have one, two, three, and four objects in them, respectively?