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Setup

02/24/21 | Typical Support of Closed 
Walks

• Our goal is to understand the behavior of walks in large graphs. 

• A walk is performed by choosing an adjacent node in the graph.
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Adjacency Matrix

02/24/21 | Typical Support of Closed 
Walks

• Encode the walk through an “adjacency matrix” 𝐴𝐴, with 
rows/columns corresponding to the vertices, and putting a 1 
between connected vertices.

• Note that as the matrix is symmetric, the eigenvalues are real and 
can be ordered 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑛𝑛, where 𝑛𝑛 is the number of vertices.

• Multiplying by the matrix can be thought of as a step in the walk.
• The entry 𝐴𝐴𝑘𝑘 𝑢𝑢𝑢𝑢 corresponds to walks of length 𝑘𝑘 between 𝑢𝑢 and 𝑣𝑣.
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0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0
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Equiangular Lines

02/24/21 | Typical Support of Closed 
Walks

Question (van Lint and Seidel 1966):
What is the maximum number of lines in ℝ𝑑𝑑 that all share the 

same angle 𝜃𝜃, for 0 < 𝜃𝜃 < 𝜋𝜋/2?

Theorem (Jiang, Tidor, Yao, Zhang and Zhao ’19):
If there exists a minimal 𝑘𝑘 such that there exists a graph on 𝑘𝑘
vertices with spectral radius exactly (1 − α)/(2α), then the 
maximum is ⌊𝑘𝑘(𝑑𝑑 − 1)/(𝑘𝑘 − 1)⌋ for α = arccos(𝜃𝜃) and large enough 
𝑑𝑑.
Otherwise, the maximum is 𝑑𝑑 + 𝑜𝑜(𝑑𝑑). 
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Equiangular Lines

02/24/21 | Typical Support of Closed 
Walks

The key ingredient was a property of graphs. Namely, showing that 
for every bounded degree matrix, the multiplicity of the second 
eigenvalue is 𝑜𝑜 𝑛𝑛 . 

Theorem (Jiang et al. ’19):
For every bounded degree connected graph with 𝑛𝑛 vertices, the 
second eigenvalue of the adjacency matrix has multiplicity 
𝑂𝑂( 𝑛𝑛

loglog 𝑛𝑛
).
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Equiangular Lines

02/24/21 | Typical Support of Closed 
Walks

The key ingredient was a property of graphs. Namely, showing that 
for every bounded degree matrix, the multiplicity of the second 
eigenvalue is 𝑜𝑜 𝑛𝑛 . 

Theorem (Jiang et al. ’19):
For every bounded degree connected graph with 𝑛𝑛 vertices, the 
second eigenvalue of the adjacency matrix has multiplicity 
𝑂𝑂( 𝑛𝑛

loglog 𝑛𝑛
). 

Compare this to the best lower bound, which says that the second 
eigenvalue of Cayley graphs of PSL(2,ℤ𝑝𝑝) has multiplicity Ω(𝑛𝑛1/3).
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Theorem 

02/24/21 | Typical Support of Closed 
Walks

• Question: Can we close this gap at all?

• Theorem A (M.-Rasmussen-Srivastava): For any bounded degree 
regular connected graph with 𝑛𝑛 vertices, the multiplicity of the 
second eigenvalue of 𝐴𝐴 is at most 𝑂𝑂( 𝑛𝑛

log1/5−𝑜𝑜𝑛𝑛(1) 𝑛𝑛
).
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Regularity

02/24/21 | Typical Support of Closed 
Walks

regular non-regular
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Theorem 
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• Question: Can we close this gap at all?

• Theorem A (M.-Rasmussen-Srivastava): For any bounded degree 
regular connected graph with 𝑛𝑛 vertices, the multiplicity of the 
second eigenvalue of 𝐴𝐴 is at most 𝑂𝑂( 𝑛𝑛

log1/5−𝑜𝑜𝑛𝑛(1) 𝑛𝑛
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Bounded Degree

02/24/21 | Typical Support of Closed 
Walks

There are examples of graphs with non-bounded degree that have 
high eigenvalue multiplicity. 
• For example, the complete graph where every vertex is 

connected to every other vertex.

𝟎𝟎 𝟏𝟏 𝟏𝟏 ⋯

𝟏𝟏 𝟎𝟎 𝟏𝟏 ⋯

𝟏𝟏 𝟏𝟏 𝟎𝟎
⋮ ⋮ ⋱
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There are examples of graphs with non-bounded degree that have 
high eigenvalue multiplicity. 
• For example, the complete graph where every vertex is 

connected to every other vertex.

If 𝐽𝐽 is the all-ones matrix and 𝐼𝐼 the identity, then 𝐴𝐴 = 𝐽𝐽 − 𝐼𝐼. The 
second eigenvalue has multiplicity 𝑛𝑛 − 1.

𝟎𝟎 𝟏𝟏 𝟏𝟏 ⋯

𝟏𝟏 𝟎𝟎 𝟏𝟏 ⋯

𝟏𝟏 𝟏𝟏 𝟎𝟎
⋮ ⋮ ⋱

Bounded Degree
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Theorem 
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• Question: Can we close this gap at all?

• Theorem A (M.-Rasmussen-Srivastava): For any bounded degree 
regular connected graph with 𝑛𝑛 vertices, the multiplicity of the 
second eigenvalue of 𝐴𝐴 is at most 𝑂𝑂( 𝑛𝑛

log1/5−𝑜𝑜𝑛𝑛(1) 𝑛𝑛
).
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Connected

02/24/21 | Typical Support of Closed 
Walks

𝑼𝑼 𝟎𝟎 𝟎𝟎 ⋯

𝟎𝟎 𝑼𝑼 𝟎𝟎 ⋯

𝟎𝟎 𝟎𝟎 𝑼𝑼
⋮ ⋮ ⋱

If there are 𝑘𝑘 copies of an adjacency 
matrix 𝑈𝑈, then the multiplicity of the
second eigenvalue is at least 𝑘𝑘.
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02/24/21 | Typical Support of Closed 
Walks

• Question: Can we close this gap at all?

• Theorem A (M.-Rasmussen-Srivastava): For any bounded degree 
regular connected graph with 𝑛𝑛 vertices, the multiplicity of the 
second eigenvalue of 𝐴𝐴 is at most 𝑂𝑂( 𝑛𝑛

log1/5−𝑜𝑜𝑛𝑛(1) 𝑛𝑛
).
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Second eigenvalue

02/24/21 | Typical Support of Closed 
Walks

Arbitrary eigenvalues can have linear multiplicity.
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Second eigenvalue

02/24/21 | Typical Support of Closed 
Walks

Arbitrary eigenvalues can have linear multiplicity.

By creating two copies of each vertex, at least half of the 
eigenvalues are 0.



22

Theorem 
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• Question: Can we close this gap at all?

• Theorem A (M.-Rasmussen-Srivastava): For any bounded degree 
regular connected graph with 𝑛𝑛 vertices, the multiplicity of the 
second eigenvalue of 𝐴𝐴 is at most 𝑂𝑂( 𝑛𝑛

log1/5−𝑜𝑜𝑛𝑛(1) 𝑛𝑛
).

• This beats the bound from Jiang et al. if the graph is regular.
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Method

02/24/21 | Typical Support of Closed 
Walks

• trace 𝐴𝐴2𝑘𝑘 = ∑𝑢𝑢 𝐴𝐴2𝑘𝑘 𝑢𝑢𝑢𝑢 = ∑𝑖𝑖=1𝑛𝑛 𝜆𝜆𝑖𝑖2𝑘𝑘

• We use the trace as a proxy for the multiplicity of the eigenvalue.

• We therefore need to bound the trace of 𝐴𝐴2𝑘𝑘 .

• The trace of 𝐴𝐴2𝑘𝑘 is ∑𝑢𝑢 𝐴𝐴2𝑘𝑘 𝑢𝑢𝑢𝑢 = ∑𝑢𝑢 𝑒𝑒𝑢𝑢𝑇𝑇𝐴𝐴2𝑘𝑘𝑒𝑒𝑢𝑢.
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– The walk starts at 𝑢𝑢.
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– We walk on our graph for 2𝑘𝑘 steps.
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• trace 𝐴𝐴2𝑘𝑘 = ∑𝑢𝑢 𝐴𝐴2𝑘𝑘 𝑢𝑢𝑢𝑢 = ∑𝑖𝑖=1𝑛𝑛 𝜆𝜆𝑖𝑖2𝑘𝑘

• We use the trace as a proxy for the multiplicity of the eigenvalue.

• We therefore need to bound the trace of 𝐴𝐴2𝑘𝑘 .

• The trace of 𝐴𝐴2𝑘𝑘 is ∑𝑢𝑢 𝐴𝐴2𝑘𝑘 𝑢𝑢𝑢𝑢 = ∑𝑢𝑢 𝑒𝑒𝑢𝑢𝑇𝑇𝐴𝐴2𝑘𝑘𝑒𝑒𝑢𝑢
– The walk starts at 𝑢𝑢.
– We walk on our graph for 2𝑘𝑘 steps.
– The walk ends at 𝑢𝑢.

• Definition: A walk is closed if it ends where it starts.
• Our goal is to count the number of closed walks.
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Cauchy's Interlacing 
Theorem

02/24/21 | Typical Support of Closed 
Walks

• Cauchy's Interlacing Theorem: for an 𝑛𝑛 − 1 × 𝑛𝑛 − 1 principal 
submatrix with eigenvalues 𝜇𝜇𝑖𝑖 of an 𝑛𝑛 × 𝑛𝑛 matrix 𝐴𝐴 with 
eigenvalues 𝜆𝜆𝑖𝑖 , the eigenvalues interlace: 𝜆𝜆1 ≤ 𝜇𝜇1 ≤ 𝜆𝜆2 ≤
⋯ ≤ 𝜇𝜇𝑛𝑛−1≤ 𝜆𝜆𝑛𝑛.

• Cauchy's Interlacing Theorem tells us that if the multiplicity of 
𝜆𝜆2 in any submatrix of size 𝑛𝑛 − 𝑠𝑠 is 𝑚𝑚, then in the original graph 
it is at most 𝑚𝑚 + 𝑠𝑠.

• Idea: Delete vertices such that most closed walks are deleted. 
As there are now few closed walks, then the trace and the 
multiplicity of 𝜆𝜆2 is low on this subgraph. Then the multiplicity of 
𝜆𝜆2 in the full graph is that of the subgraph plus the number of 
vertices deleted. 
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Vertex Deletion

02/24/21 | Typical Support of Closed 
Walks

• The diagonal entries of 𝐴𝐴2𝑘𝑘 correspond to the walks that are 
closed. We want to show most walks are deleted.

𝑢𝑢
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• The diagonal entries of 𝐴𝐴2𝑘𝑘 correspond to the walks that are 
closed. We want to show most walks are deleted.

𝑢𝑢
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Vertex Deletion
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• The diagonal entries of 𝐴𝐴2𝑘𝑘 correspond to the walks that are 
closed. We want to show most walks are deleted.

𝑢𝑢
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Vertex Deletion

02/24/21 | Typical Support of Closed 
Walks

• The diagonal entries of 𝐴𝐴2𝑘𝑘 correspond to the walks that are 
closed. We want to show most walks are deleted.

• Most walks will be deleted if most walks hit many different vertices.

𝑢𝑢
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Vertex Deletion

02/24/21 | Typical Support of Closed 
Walks

• The diagonal entries of 𝐴𝐴2𝑘𝑘 correspond to the walks that are 
closed. We want to show most walks are deleted.

• Most walks will be deleted if most walks hit many different vertices.

• If we delete most walks, then the trace is low, meaning the 
multiplicity in the subgraph is low, meaning the original multiplicity 
is low. 𝑢𝑢
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Support Question

02/24/21 | Typical Support of Closed 
Walks

New Goal: Show that most closed walks of length 𝑘𝑘 visit many 
vertices.
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Support Question

02/24/21 | Typical Support of Closed 
Walks

New Goal: Show that most closed walks of length 𝑘𝑘 visit many 
vertices.

• If I do not care whether the walk is closed, the problem is much 
easier. The hard part is the closed condition. 
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Example

02/24/21 | Typical Support of Closed 
Walks
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High Support

02/24/21 | Typical Support of Closed 
Walks

Theorem B: With high probability, the support of a closed walk of 
length 2𝑘𝑘 on a regular graph has support Ω 𝑘𝑘1/5 .
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High Support

02/24/21 | Typical Support of Closed 
Walks

Theorem B: With high probability, the support of a closed walk of 
length 2𝑘𝑘 on a regular graph has support Ω 𝑘𝑘1/5 .

Theorem B (detailed):

The probability a closed walk of length 2𝑘𝑘 on a regular graph has 
support at most 𝑠𝑠 is 𝑜𝑜𝑘𝑘(1) of the probability of having support at 
most 2𝑠𝑠, for 𝑠𝑠 = 𝑂𝑂(𝑘𝑘1/5).
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The path (warmup)

02/24/21 | Typical Support of Closed 
Walks

• For the path, on average we travel Θ( 𝑘𝑘) from the starting 
vertex on a closed walk of length 2𝑘𝑘.



41

The bulb tree (warmup)

02/24/21 | Typical Support of Closed 
Walks

• For the tree with a bulb at the root, on average we do not travel 
more than Θ(log 𝑘𝑘) from the bulb.
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Walks of Small Support

02/24/21 | Typical Support of Closed 
Walks

• How many walks are closed, starting at 𝑢𝑢 and stay within the set 
𝑆𝑆?

• If a walk stays within the set 𝑆𝑆, then it is counted in the 
quadratic form of the submatrix 𝑒𝑒𝑢𝑢𝑇𝑇𝐴𝐴𝑆𝑆2𝑘𝑘𝑒𝑒𝑢𝑢.
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Walks of Small Support

02/24/21 | Typical Support of Closed 
Walks

• How many walks are closed, starting at 𝑢𝑢 and stay within the set 
𝑆𝑆?

• If a walk stays within the set 𝑆𝑆, then it is counted in the 
quadratic form of the submatrix 𝑒𝑒𝑢𝑢𝑇𝑇𝐴𝐴𝑆𝑆2𝑘𝑘𝑒𝑒𝑢𝑢.

• We start our walk at 𝑢𝑢.
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Walks of Small Support

02/24/21 | Typical Support of Closed 
Walks

• How many walks are closed, starting at 𝑢𝑢 and stay within the set 
𝑆𝑆?

• If a walk stays within the set 𝑆𝑆, then it is counted in the 
quadratic form of the submatrix 𝑒𝑒𝑢𝑢𝑇𝑇𝐴𝐴𝑆𝑆2𝑘𝑘𝑒𝑒𝑢𝑢.

• We start our walk at 𝑢𝑢.
• We remain within 𝑆𝑆 for 2𝑘𝑘 steps.
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Walks of Small Support

02/24/21 | Typical Support of Closed 
Walks

• How many walks are closed, starting at 𝑢𝑢 and stay within the set 
𝑆𝑆?

• If a walk stays within the set 𝑆𝑆, then it is counted in the 
quadratic form of the submatrix 𝑒𝑒𝑢𝑢𝑇𝑇𝐴𝐴𝑆𝑆2𝑘𝑘𝑒𝑒𝑢𝑢.

• We start our walk at 𝑢𝑢.
• We remain within 𝑆𝑆 for 2𝑘𝑘 steps.
• We end at 𝑢𝑢.
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Walks of Small Support

02/24/21 | Typical Support of Closed 
Walks

• How many walks are closed, starting at 𝑢𝑢 and stay within the set 
𝑆𝑆?

• If a walk stays within the set 𝑆𝑆, then it is counted in the 
quadratic form of the submatrix 𝑒𝑒𝑢𝑢𝑇𝑇𝐴𝐴𝑆𝑆2𝑘𝑘𝑒𝑒𝑢𝑢.

• We start our walk at 𝑢𝑢.
• We remain within 𝑆𝑆 for 2𝑘𝑘 steps.
• We end at 𝑢𝑢.
• This quadratic form is upper bounded by the top eigenvalue of 

𝐴𝐴𝑆𝑆, 𝜆𝜆𝑆𝑆.
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0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0
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45
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0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

1 2

3

5

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

We can count walks on this support using the submatrix 𝐴𝐴𝑆𝑆.
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Resolution

02/24/21 | Typical Support of Closed 
Walks

• The number of closed walks remaining on a set 𝑆𝑆 after 2𝑘𝑘 steps 
is at most 𝜆𝜆𝑆𝑆2𝑘𝑘 .

• Moreover, we know that for large 𝑘𝑘, 𝑒𝑒𝑢𝑢𝑇𝑇𝐴𝐴𝑆𝑆2𝑘𝑘𝑒𝑒𝑢𝑢 ≈ 𝜓𝜓𝑆𝑆, 𝑒𝑒𝑢𝑢 2𝜆𝜆𝑆𝑆2𝑘𝑘 . 

• Claim: To show that there are many more walks on 𝑇𝑇 than 𝑆𝑆, it is 
sufficient to show that 𝜆𝜆𝑇𝑇2𝑘𝑘 ≫ 𝜆𝜆𝑆𝑆2𝑘𝑘.

• If I find a set 𝑇𝑇 such that 𝜆𝜆𝑇𝑇 ≥ 1 + 𝜖𝜖 𝜆𝜆, then even if 𝜖𝜖 is small, 
for large enough 𝑘𝑘, 𝜆𝜆𝑇𝑇2𝑘𝑘 ≫ 𝜆𝜆𝑆𝑆2𝑘𝑘 . 

• Lemma A: There exists a set 𝑇𝑇 = 𝑆𝑆 ∪ {𝑣𝑣} such that 𝜆𝜆𝑇𝑇 > 𝜆𝜆𝑆𝑆(1 +
𝑐𝑐
𝑆𝑆 5). Therefore, for 𝑘𝑘 ≫ 𝑆𝑆 5, 𝜆𝜆𝑇𝑇2𝑘𝑘 ≫ 𝜆𝜆𝑆𝑆2𝑘𝑘 .
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How to increase eigenvalue?

02/24/21 | Typical Support of Closed 
Walks

• Lemma B: For any vertex 𝑣𝑣 ∉ 𝑆𝑆 that neighbors a vertex 𝑢𝑢 ∈ 𝑆𝑆, 
the top eigenvalue of 𝑇𝑇 = 𝑆𝑆 ∪ {𝑣𝑣} satisfies 𝜆𝜆𝑇𝑇 ≥ 𝜆𝜆𝑆𝑆 + Ω(𝜓𝜓𝑆𝑆 𝑢𝑢 2).

• Remark: As we are looking at a subset of a regular graph, we 
can extend the graph at any vertex which is not of maximal 
degree in 𝑆𝑆.

• Theorem C: For any connected graph of bounded degree, there 
is a vertex 𝑢𝑢 of non-maximal degree such that 𝜓𝜓 𝑢𝑢 = Ω(𝑛𝑛−

5
2).

• Note that we only need one vertex with non-maximal degree to 
have large value in 𝜓𝜓. Cioabă and Gregory give a lower bound 
on the minimum value in the principal eigenvector, but that 
bound is exponentially small. 
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Example of the Lollipop

02/24/21 | Typical Support of Closed 
Walks

• The lollipop has an exponentially small value at the end of its 
tail, but vertices near the bulb still have polynomially large 
value. 
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Example of the Lollipop

02/24/21 | Typical Support of Closed 
Walks

• The lollipop has an exponentially small value at the end of its 
tail, but vertices near the bulb still have polynomially large 
value. 
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Result

02/24/21 | Typical Support of Closed 
Walks

• We know that for some vertex 𝑡𝑡, we have
𝜓𝜓𝑆𝑆 𝑡𝑡 ≥ 1/ |𝑆𝑆|

• If we can bound the ratio
𝜓𝜓𝑆𝑆(𝑢𝑢)/𝜓𝜓𝑆𝑆 𝑡𝑡

for this 𝑡𝑡, that is sufficient.
• Lemma C: There exists a 𝑢𝑢 of non-maximal degree for which

𝜓𝜓𝑠𝑠 𝑢𝑢
𝜓𝜓𝑆𝑆 𝑡𝑡

= Ω(
1

𝐷𝐷 𝜕𝜕𝑆𝑆
)

where 𝐷𝐷 is the diameter of the graph, and |𝜕𝜕𝑆𝑆| is the number of
vertices of non-maximal degree.

• Both these quantities are at most |𝑆𝑆|, which translates into a 
bound of

𝜓𝜓𝑆𝑆 𝑢𝑢 ≥ 1/ 𝑆𝑆
5
2
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Mangrove

02/24/21 | Typical Support of Closed 
Walks

• The worst case is when both the boundary and diameter are the 
order of |𝑆𝑆|. In the below example, for all 𝑢𝑢 on the boundary 
𝜓𝜓 𝑢𝑢 = Θ(1/|𝑆𝑆|

5
2), which is the bound given by our work.

n vertices

log 
d
n depth
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Full Results

02/24/21 | Typical Support of Closed 
Walks

• Our full result bounds the number of eigenvalues in an interval.

• Theorem A (full): The number of eigenvalues of 𝐴𝐴 in the interval 
[ 1 − log log 𝑛𝑛

log 𝑛𝑛
𝜆𝜆2, 𝜆𝜆2] is 𝑂𝑂 𝑛𝑛

log1/5−𝑜𝑜𝑛𝑛(1)𝑛𝑛
.

• For bipartite Ramanujan graphs, the number of eigenvalues in 
this interval is Ω 𝑛𝑛

log3/2𝑛𝑛
, meaning our result is tight except for 

potentially the exponent.
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Full Increase

02/24/21 | Typical Support of Closed 
Walks

Lemma A (full): For every connected subset of vertices 𝑆𝑆 of a regular 
graph there is a subset of vertices 𝑇𝑇 ⊃ 𝑆𝑆, 𝑇𝑇 = 2|𝑆𝑆|, such that

𝜆𝜆1 𝐴𝐴𝑇𝑇 ≥ 𝜆𝜆1 𝐴𝐴𝑆𝑆 +
𝑐𝑐
𝑆𝑆 4

for some constant 𝑐𝑐.
• Method

1) Show ∃𝑢𝑢 ∈ 𝜕𝜕𝑆𝑆 such that 𝜓𝜓𝑆𝑆 𝑢𝑢 ≥ 1
𝑆𝑆 5/2

2) Show that for a vertex 𝑣𝑣 ∉ 𝑆𝑆 adjacent to 𝑢𝑢,
𝜆𝜆1 𝐴𝐴𝑆𝑆∪𝑢𝑢 = 𝜆𝜆1 𝐴𝐴𝑆𝑆 + Ω 𝜓𝜓𝑆𝑆 𝑢𝑢 2 .

Repeat this process |𝑆𝑆| times to achieve a set of size 2|𝑆𝑆|.
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Visualization of 2

02/24/21 | Typical Support of Closed 
Walks
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Visualization of 2

02/24/21 | Typical Support of Closed 
Walks
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Visualization of 2

02/24/21 | Typical Support of Closed 
Walks
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Random Walk Matrix

02/24/21 | Typical Support of Closed 
Walks

• We can encode the distribution of the random walk through its 
random walk matrix W, which is such that Wvu is the probability 
of transitioning from node 𝑢𝑢 to node 𝑣𝑣.

• For a simple random walk, the probability of transitioning 
between two connected vertices u and v is the reciprocal of the 
degree of 𝑢𝑢.

1

2

3 4

0 1/2 1/3 0

1/2 0 1/3 0

1/2 1/2 0 1

0 0 1/3 0
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Spectral Theory

02/24/21 | Typical Support of Closed 
Walks

1

2

3 4

0 1/2 0 0

1/2 0 1/3 0

1/2 1/2 0 1

0 0 1/3 0

0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0

Adjacency matrix 𝐴𝐴 Walk matrix 𝑊𝑊

The key thing about regular graphs is that their adjacency matrices are the same up to 
rescaling to the random walk matrix.
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Theorem

02/24/21 | Typical Support of Closed 
Walks

We now consider any random walk matrix 𝑊𝑊 of a graph with 
maximum degree Δ, and the boundary of 𝑆𝑆 𝜕𝜕𝑆𝑆.

Lemma C (full): For any connected subgraph 𝑆𝑆, there is a vertex 
𝑢𝑢 ∈ 𝜕𝜕𝑆𝑆 such that 𝜓𝜓𝑆𝑆 𝑢𝑢 ≥ 1

Δ 𝑆𝑆 2 𝜓𝜓𝑆𝑆(𝑡𝑡) for any vertex 𝑡𝑡 ∈ 𝑆𝑆.

All of our results generalize to the random walk matrix.
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Observations

02/24/21 | Typical Support of Closed 
Walks

• By the power method, lim
𝑟𝑟→∞

𝑊𝑊𝑆𝑆
𝑟𝑟𝟏𝟏𝑆𝑆

𝑊𝑊𝑆𝑆
𝑟𝑟𝟏𝟏𝑆𝑆

approaches 𝜓𝜓. Therefore, 

lim
𝑟𝑟→∞

𝟏𝟏𝑆𝑆
𝑇𝑇𝑊𝑊𝑆𝑆

𝑟𝑟𝑒𝑒𝑢𝑢
𝟏𝟏𝑆𝑆
𝑇𝑇𝑊𝑊𝑆𝑆

𝑟𝑟𝑒𝑒𝑡𝑡
= 𝜓𝜓 𝑢𝑢

𝜓𝜓 𝑡𝑡
.

• 𝑊𝑊𝑆𝑆
𝑟𝑟𝑒𝑒𝑢𝑢 represents the random walk distribution for the walk 

remaining on 𝑆𝑆.

• 𝟏𝟏𝑆𝑆
𝑇𝑇𝑊𝑊𝑆𝑆

𝑟𝑟𝑒𝑒𝑢𝑢
𝟏𝟏𝑆𝑆
𝑇𝑇𝑊𝑊𝑆𝑆

𝑟𝑟𝑒𝑒𝑡𝑡
is the ratio of the probabilities of walks starting at 𝑢𝑢 and 𝑡𝑡

remaining in our set for 𝑟𝑟 steps.  

• The probability that we remain in the set does not change if we 
contract all the points directly outside the boundary to a single 
point 𝑠𝑠.

1) Lower bound 𝜓𝜓𝑆𝑆(𝑢𝑢) for some 𝑢𝑢 ∈ 𝜕𝜕𝑆𝑆
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Visualization

02/24/21 | Typical Support of Closed 
Walks

There’s no difference in the probability we remain in the set if we contract all the 
points immediately outside the boundary to one point.

t

u

1) Lower bound 𝜓𝜓𝑆𝑆(𝑢𝑢) for some 𝑢𝑢 ∈ 𝜕𝜕𝑆𝑆
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Visualization

02/24/21 | Typical Support of Closed 
Walks

There’s no difference in the probability we remain in the set if we contract all the 
points immediately outside the boundary to one point.

t

u

t

s

u

1) Lower bound 𝜓𝜓𝑆𝑆(𝑢𝑢) for some 𝑢𝑢 ∈ 𝜕𝜕𝑆𝑆
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Observations

02/24/21 | Typical Support of Closed 
Walks

• If we know the walk reaches 𝑡𝑡 before it reaches 𝑠𝑠, and it takes 𝑗𝑗
steps to reach 𝑡𝑡, then the probability that it stays within 𝑆𝑆 is the 
probability a walk of length 𝑟𝑟 − 𝑗𝑗 starting at 𝑡𝑡 stays within 𝑆𝑆.

1) Lower bound 𝜓𝜓𝑆𝑆(𝑢𝑢) for some 𝑢𝑢 ∈ 𝜕𝜕𝑆𝑆
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Observations

02/24/21 | Typical Support of Closed 
Walks

• If we know the walk reaches 𝑡𝑡 before it reaches 𝑠𝑠, and it takes 𝑗𝑗
steps to reach 𝑡𝑡, then the probability that it stays within 𝑆𝑆 is the 
probability a walk of length 𝑟𝑟 − 𝑗𝑗 starting at 𝑡𝑡 stays within 𝑆𝑆.

• Specifically, if 𝑌𝑌𝑗𝑗 is the event that the walk hits 𝑡𝑡 before 𝑠𝑠 AND hits 
𝑡𝑡 for the first time at step 𝑗𝑗, then

𝟏𝟏𝑆𝑆𝑇𝑇𝑊𝑊𝑆𝑆
𝑟𝑟𝑒𝑒𝑢𝑢 ≥�

𝑗𝑗=0

𝑟𝑟

Pr 𝑌𝑌𝑗𝑗 𝟏𝟏𝑆𝑆𝑇𝑇𝑊𝑊𝑆𝑆
𝑟𝑟−𝑗𝑗𝑒𝑒𝑡𝑡 ≥ 𝟏𝟏𝑆𝑆𝑇𝑇𝑊𝑊𝑆𝑆

𝑟𝑟𝑒𝑒𝑡𝑡�
𝑗𝑗=0

𝑟𝑟

Pr(𝑌𝑌𝑗𝑗)

1) Lower bound 𝜓𝜓𝑆𝑆(𝑢𝑢) for some 𝑢𝑢 ∈ 𝜕𝜕𝑆𝑆
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Observations

02/24/21 | Typical Support of Closed 
Walks

• If we know the walk reaches 𝑡𝑡 before it reaches 𝑠𝑠, and it takes 𝑗𝑗
steps to reach 𝑡𝑡, then the probability that it stays within 𝑆𝑆 is the 
probability a walk of length 𝑟𝑟 − 𝑗𝑗 starting at 𝑡𝑡 stays within 𝑆𝑆.

• Specifically, if 𝑌𝑌𝑗𝑗 is the event that the walk hits 𝑡𝑡 before 𝑠𝑠 AND hits 
𝑡𝑡 for the first time at step 𝑗𝑗, then

𝟏𝟏𝑆𝑆𝑇𝑇𝑊𝑊𝑆𝑆
𝑟𝑟𝑒𝑒𝑢𝑢 ≥�

𝑗𝑗=0

𝑟𝑟

Pr 𝑌𝑌𝑗𝑗 𝟏𝟏𝑆𝑆𝑇𝑇𝑊𝑊𝑆𝑆
𝑟𝑟−𝑗𝑗𝑒𝑒𝑡𝑡 ≥ 𝟏𝟏𝑆𝑆𝑇𝑇𝑊𝑊𝑆𝑆

𝑟𝑟𝑒𝑒𝑡𝑡�
𝑗𝑗=0

𝑟𝑟

Pr(𝑌𝑌𝑗𝑗)

• As the expected hitting time of 𝑡𝑡 is finite, lim
𝑟𝑟→∞

∑𝑗𝑗=0𝑟𝑟 Pr(𝑌𝑌𝑗𝑗) is the 
probability that 𝑡𝑡 is hit before 𝑠𝑠.

1) Lower bound 𝜓𝜓𝑆𝑆(𝑢𝑢) for some 𝑢𝑢 ∈ 𝜕𝜕𝑆𝑆
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Visualization

02/24/21 | Typical Support of Closed 
Walks

A random walk of length 𝑟𝑟 conditioned on reaching 𝑡𝑡 before 𝑠𝑠 that reaches 𝑡𝑡 for the 
first time at step 𝑗𝑗 has the same probability of staying within the set as a random 
walk starting at 𝑡𝑡 of length 𝑟𝑟 − 𝑗𝑗.

t

s

u

1) Lower bound 𝜓𝜓𝑆𝑆(𝑢𝑢) for some 𝑢𝑢 ∈ 𝜕𝜕𝑆𝑆
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Electric Flow

02/24/21 | Typical Support of Closed 
Walks

• This probability is equivalent to the voltage of 𝑢𝑢, denoted 𝑉𝑉(𝑢𝑢), 
in a flow from 𝑠𝑠 to 𝑡𝑡 where the voltages 𝑉𝑉 𝑡𝑡 = 1,𝑉𝑉 𝑠𝑠 = 0 [e.g.
Bollobás]. 

1) Lower bound 𝜓𝜓𝑆𝑆(𝑢𝑢) for some 𝑢𝑢 ∈ 𝜕𝜕𝑆𝑆
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Electric Flow

02/24/21 | Typical Support of Closed 
Walks

• This probability is equivalent to the voltage of 𝑢𝑢, denoted 𝑉𝑉(𝑢𝑢), 
in a flow from 𝑠𝑠 to 𝑡𝑡 where the voltages 𝑉𝑉 𝑡𝑡 = 1,𝑉𝑉 𝑠𝑠 = 0 [e.g.
Bollobás]. 

• By Ohm’s law, the total current from 𝑠𝑠 to 𝑡𝑡 is at least 1/𝑑𝑑𝑑𝑑𝑠𝑠𝑡𝑡(𝑠𝑠, 𝑡𝑡). 
Because 𝑠𝑠 has at most |S|Δ neighbors, there is some neighbor of 
𝑠𝑠 such that current through this vertex is at least 1/Δ 𝑆𝑆 2.  
Therefore, the voltage of this vertex is at least 1/Δ 𝑆𝑆 2, as is the 
probability of reaching 𝑡𝑡 before 𝑠𝑠.

1) Lower bound 𝜓𝜓𝑆𝑆(𝑢𝑢) for some 𝑢𝑢 ∈ 𝜕𝜕𝑆𝑆
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Electric Flow

02/24/21 | Typical Support of Closed 
Walks

• This probability is equivalent to the voltage of 𝑢𝑢, denoted 𝑉𝑉(𝑢𝑢), 
in a flow from 𝑠𝑠 to 𝑡𝑡 where the voltages 𝑉𝑉 𝑡𝑡 = 1,𝑉𝑉 𝑠𝑠 = 0 [e.g.
Bollobás]. 

• By Ohm’s law, the total current from 𝑠𝑠 to 𝑡𝑡 is at least 1/𝑑𝑑𝑑𝑑𝑠𝑠𝑡𝑡(𝑠𝑠, 𝑡𝑡). 
Because 𝑠𝑠 has at most |S|Δ neighbors, there is some neighbor of 
𝑠𝑠 such that current through this vertex is at least 1/Δ 𝑆𝑆 2.  
Therefore, the voltage of this vertex is at least 1/Δ 𝑆𝑆 2, as is the 
probability of reaching 𝑡𝑡 before 𝑠𝑠.

• For some vertex 𝑢𝑢 ∈ 𝜕𝜕𝑆𝑆, 𝜓𝜓𝑆𝑆 𝑢𝑢
𝜓𝜓𝑆𝑆 𝑡𝑡

≥ 1
Δ|𝑆𝑆|2

. As we can assume 𝜓𝜓𝑆𝑆 𝑡𝑡 ≥

1/ 𝑆𝑆,
𝜓𝜓𝑆𝑆 𝑢𝑢 ≥ 1/(Δ|𝑆𝑆|5/2).

1) Lower bound 𝜓𝜓𝑆𝑆(𝑢𝑢) for some 𝑢𝑢 ∈ 𝜕𝜕𝑆𝑆
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Electric Flow

02/24/21 | Typical Support of Closed 
Walks

We interpret this probability as an electrical current between 𝑠𝑠 and 𝑡𝑡. There must be 
one vertex adjacent to 𝑠𝑠 that receives a large current flow and therefore has high 
eigenvector value. We make this our 𝑢𝑢. 

u1v

t

s

1) Lower bound 𝜓𝜓𝑆𝑆(𝑢𝑢) for some 𝑢𝑢 ∈ 𝜕𝜕𝑆𝑆
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Questions

02/08/21 | Typical Support of Closed 
Walks

• Is Ω(𝑘𝑘1/5) tight for the typical support of a walk on a bounded 
degree graph.

• Is there an 𝜖𝜖 > 0 such that the random walk matrix of every graph 
has second eigenvalue multiplicity 𝑂𝑂(𝑛𝑛1−𝜖𝜖)?
– The most we know is that there are graphs with second eigenvalue 

multiplicity Ω 𝑛𝑛1/3 .



7702/24/21 | Typical Support of Closed 
Walks

Thank you!
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