## Typical Support of Closed

 Walks and Eigenvalue MultiplicityTheo McKenzie
with Peter Rasmussen (University of Copenhagen) and Nikhil Srivastava (University of California, Berkeley)

Delaware Discrete Mathematics/Algebra Seminar 2/24/2021

## Setup

- Our goal is to understand the behavior of walks in large graphs.
- A walk is performed by choosing an adjacent node in the graph.



## Setup

- Our goal is to understand the behavior of walks in large graphs.
- A walk is performed by choosing an adjacent node in the graph.



## Setup

- Our goal is to understand the behavior of walks in large graphs.
- A walk is performed by choosing an adjacent node in the graph.



## Setup

- Our goal is to understand the behavior of walks in large graphs.
- A walk is performed by choosing an adjacent node in the graph.



## Setup

- Our goal is to understand the behavior of walks in large graphs.
- A walk is performed by choosing an adjacent node in the graph.



## Adjacency Matrix

- Encode the walk through an "adjacency matrix" $A$, with rows/columns corresponding to the vertices, and putting a 1 between connected vertices.

$\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
- Note that as the matrix is symmetric, the eigenvalues are real and can be ordered $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, where $n$ is the number of vertices.
- Multiplying by the matrix can be thought of as a step in the walk.
- The entry $\left(A^{k}\right)_{u v}$ corresponds to walks of length $k$ between $u$ and $v$.


## Equiangular Lines

Question (van Lint and Seidel 1966):
What is the maximum number of lines in $\mathbb{R}^{d}$ that all share the same angle $\theta$, for $0<\theta<\pi / 2$ ?

Theorem (Jiang, Tidor, Yao, Zhang and Zhao '19):
If there exists a minimal $k$ such that there exists a graph on $k$ vertices with spectral radius exactly $(1-\alpha) /(2 \alpha)$, then the maximum is $\lfloor k(d-1) /(k-1)\rfloor$ for $\alpha=\arccos (\theta)$ and large enough $d$.
Otherwise, the maximum is $d+o(d)$.

## Equiangular Lines

Question (van Lint and Seidel 1966):
What is the maximum number of lines in $\mathbb{R}^{d}$ that all share the same angle $\theta$, for $0<\theta<\pi / 2$ ?

Theorem (Jiang, Tidor, Yao, Zhang and Zhao '19):
If there exists a minimal $k$ such that there exists a graph on $k$ vertices with spectral radius exactly $(1-\alpha) /(2 \alpha)$, then the maximum is $[k(d-1) /(k-1)]$ for $\alpha=\arccos (\theta)$ and large enough $d$.
Otherwise, the maximum is $d+o(d)$.

## Equiangular Lines

The key ingredient was a property of graphs. Namely, showing that for every bounded degree matrix, the multiplicity of the second eigenvalue is $o(n)$.

## Theorem (Jiang et al. '19):

For every bounded degree connected graph with $n$ vertices, the second eigenvalue of the adjacency matrix has multiplicity $O\left(\frac{n}{\log \log n}\right)$.

## Equiangular Lines

The key ingredient was a property of graphs. Namely, showing that for every bounded degree matrix, the multiplicity of the second eigenvalue is $o(n)$.

## Theorem (Jiang et al. '19):

For every bounded degree connected graph with $n$ vertices, the second eigenvalue of the adjacency matrix has multiplicity $O\left(\frac{n}{\log \log n}\right)$.

Compare this to the best lower bound, which says that the second eigenvalue of Cayley graphs of $\operatorname{PSL}\left(2, \mathbb{Z}_{p}\right)$ has multiplicity $\Omega\left(n^{1 / 3}\right)$.

## Theorem

- Question: Can we close this gap at all?

Theorem A (M.-Rasmussen-Srivastava): For any bounded degree regular connected graph with $n$ vertices, the multiplicity of the second eigenvalue of $A$ is at most $O\left(\frac{n}{\log ^{1 / 5-o_{n}(1)} n}\right)$.

## Regularity


regular

non-regular

## Theorem

- Question: Can we close this gap at all?
- Theorem A (M.-Rasmussen-Srivastava): For anybounded degree regular connected graph with $n$ vertices, the multiplicity of the second eigenvalue of $A$ is at most $O\left(\frac{n}{\log ^{1 / 5-o_{n}(1)} n}\right)$.


## Bounded Degree

There are examples of graphs with non-bounded degree that have high eigenvalue multiplicity.

- For example, the complete graph where every vertex is connected to every other vertex.

$\ldots$.


## Bounded Degree

There are examples of graphs with non-bounded degree that have high eigenvalue multiplicity.

- For example, the complete graph where every vertex is connected to every other vertex.


If $J$ is the all-ones matrix and $I$ the identity, then $A=J-I$. The second eigenvalue has multiplicity $n-1$.

Theorem

- Question: Can we close this gap at all?
- Theorem A(M.-Rasmussen-Srivastava): For any bounded degree regular connected graph with $n$ vertices, the multiplicity of the second eigenvalue of $A$ is at most $O\left(\frac{n}{\log ^{1 / 5-o_{n}(1)} n}\right)$.


## Connected



If there are $k$ copies of an adjacency matrix $U$, then the multiplicity of the second eigenvalue is at least $k$.


## Theorem

- Question: Can we close this gap at all?
- Theorem A (M.-Rasmussen-Srivastava): For any bounded degree regular connected graph with $n$ vertices, the multiplicity of the second eigenvalue of $A$ is at most $O\left(\frac{n}{\log ^{1 / 5-o_{n}(1)} n}\right)$.


## Second eigenvalue

Arbitrary eigenvalues can have linear multiplicity.


## Second eigenvalue

Arbitrary eigenvalues can have linear multiplicity.


By creating two copies of each vertex, at least half of the eigenvalues are 0.

Theorem

- Question: Can we close this gap at all?
- Theorem A (M.-Rasmussen-Srivastava): For any bounded degree regular connected graph with $n$ vertices, the multiplicity of the second eigenvalue of $A$ is at most $O\left(\frac{n}{\log ^{1 / 5-o_{n}(1)} n}\right)$.
- This beats the bound from Jiang et al. if the graph is regular.

Theorem

- Question: Can we close this gap at all?
- Theorem A (M.-Rasmussen-Srivastava): For any bounded degree regular connected graph with $n$ vertices, the multiplicity of the second eigenvalue of $A$ is at most $O\left(\frac{n}{\log ^{1 / 5-o_{n}(1)} n}\right)$.
- This beats the bound from Jiang et al. if the graph isregular.


## Method

- $\operatorname{trace}\left(A^{2 k}\right)=\sum_{u}\left(A^{2 k}\right)_{u u}=\sum_{i=1}^{n} \lambda_{i}^{2 k}$
- We use the trace as a proxy for the multiplicity of the eigenvalue.
- We therefore need to bound the trace of $A^{2 k}$.
- The trace of $A^{2 k}$ is $\sum_{u}\left(A^{2 k}\right)_{u u}=\sum_{u} e_{v}^{T} A^{2 k} e_{v}$.


## Method

- $\operatorname{trace}\left(A^{2 k}\right)=\sum_{u}\left(A^{2 k}\right)_{u u}=\sum_{i=1}^{n} \lambda_{i}^{2 k}$
- We use the trace as a proxy for the multiplicity of the eigenvalue.
- We therefore need to bound the trace of $A^{2 k}$.
- The trace of $A^{2 k}$ is $\sum_{u}\left(A^{2 k}\right)_{u u}=\sum_{u} e_{u}^{T} A^{2} e_{u}$
- The walk starts at $u$.


## Method

- $\operatorname{trace}\left(A^{2 k}\right)=\sum_{u}\left(A^{2 k}\right)_{u u}=\sum_{i=1}^{n} \lambda_{i}^{2 k}$
- We use the trace as a proxy for the multiplicity of the eigenvalue.
- We therefore need to bound the trace of $A^{2 k}$.
- The trace of $A^{2 k}$ is $\sum_{u}\left(A^{2 k}\right)_{u u}=\sum_{u} e_{u}^{T} A^{2 k}{ }_{u}$
- The walk starts at $u$.
- We walk on our graph for $2 k$ steps.


## Method

- $\operatorname{trace}\left(A^{2 k}\right)=\sum_{u}\left(A^{2 k}\right)_{u u}=\sum_{i=1}^{n} \lambda_{i}^{2 k}$
- We use the trace as a proxy for the multiplicity of the eigenvalue.
- We therefore need to bound the trace of $A^{2 k}$.
- The trace of $A^{2 k}$ is $\sum_{u}\left(A^{2 k}\right)_{u u}=\sum_{u} e_{u}^{T} A^{2 k} e_{u}$
- The walk starts at $u$.
- We walk on our graph for $2 k$ steps.
- The walk ends at $u$.


## Method

- $\operatorname{trace}\left(A^{2 k}\right)=\sum_{u}\left(A^{2 k}\right)_{u u}=\sum_{i=1}^{n} \lambda_{i}^{2 k}$
- We use the trace as a proxy for the multiplicity of the eigenvalue.
- We therefore need to bound the trace of $A^{2 k}$.
- The trace of $A^{2 k}$ is $\sum_{u}\left(A^{2 k}\right)_{u u}=\sum_{u} e_{u}^{T} A^{2 k} e_{u}$
- The walk starts at $u$.
- We walk on our graph for $2 k$ steps.
- The walk ends at $u$.
- Definition: A walk is closed if it ends where it starts.
- Our goal is to count the number of closed walks.


## Cauchy's Interlacing Theorem

- Cauchy's Interlacing Theorem: for an $n-1 \times n-1$ principal submatrix with eigenvalues $\mu_{i}$ of an $n \times n$ matrix $A$ with eigenvalues $\lambda_{i}$, the eigenvalues interlace: $\lambda_{1} \leq \mu_{1} \leq \lambda_{2} \leq$ $\cdots \leq \mu_{n-1} \leq \lambda_{n}$.
- Cauchy's Interlacing Theorem tells us that if the multiplicity of $\lambda_{2}$ in any submatrix of size $n-s$ is $m$, then in the original graph it is at most $m+s$.
- Idea: Delete vertices such that most closed walks are deleted. As there are now few closed walks, then the trace and the multiplicity of $\lambda_{2}$ is low on this subgraph. Then the multiplicity of $\lambda_{2}$ in the full graph is that of the subgraph plus the number of vertices deleted.


## Vertex Deletion

- The diagonal entries of $A^{2 k}$ correspond to the walks that are closed. We want to show most walks are deleted.



## Vertex Deletion

- The diagonal entries of $A^{2 k}$ correspond to the walks that are closed. We want to show most walks are deleted.



## Vertex Deletion

- The diagonal entries of $A^{2 k}$ correspond to the walks that are closed. We want to show most walks are deleted.



## Vertex Deletion

- The diagonal entries of $A^{2 k}$ correspond to the walks that are closed. We want to show most walks are deleted.
- Most walks will be deleted if most walks hit many different vertices.



## Vertex Deletion

- The diagonal entries of $A^{2 k}$ correspond to the walks that are closed. We want to show most walks are deleted.
- Most walks will be deleted if most walks hit many different vertices.
- If we delete most walks, then the trace is low, meaning the multiplicity in the subgraph is low, meaning the original multiplicity is low.



## Support Question

New Goal: Show that most closed walks of length $k$ visit many vertices.

## Support Question

New Goal: Show that most closed walks of length $k$ visit many vertices.

- If I do not care whether the walk is closed, the problem is much easier. The hard part is the closed condition.


## Example



## High Support

Theorem B: With high probability, the support of a closed walk of length $2 k$ on a regular graph has support $\Omega\left(k^{1 / 5}\right)$.

## High Support

Theorem B: With high probability, the support of a closed walk of length $2 k$ on a regular graph has support $\Omega\left(k^{1 / 5}\right)$.

Theorem B (detailed):

The probability a closed walk of length $2 k$ on a regular graph has support at most $s$ is $o_{k}(1)$ of the probability of having support at most $2 s$, for $s=O\left(k^{1 / 5}\right)$.

## The path (warmup)

- For the path, on average we travel $\Theta(\sqrt{k})$ from the starting vertex on a closed walk of length $2 k$.


## The bulb tree (warmup)

- For the tree with a bulb at the root, on average we do not travel more than $\Theta(\log k)$ from the bulb.



## Walks of Small Support

- How many walks are closed, starting at $u$ and stay within the set S?
- If a walk stays within the set $S$, then it is counted in the quadratic form of the submatrix $e_{u}^{T} A_{S}^{2 k} e_{u}$.


## Walks of Small Support

- How many walks are closed, starting at $u$ and stay within the set S?
- If a walk stays within the set $S$, then it is counted in the quadratic form of the submatrix $e_{u}^{T} A_{S}^{2 l} e_{u}$
- We start our walk at $u$.


## Walks of Small Support

- How many walks are closed, starting at $u$ and stay within the set S?
- If a walk stays within the set $S$, then it is counted in the quadratic form of the submatrix $e_{2}^{7} A_{S}^{2 k} e_{u}$.
- We start our walk at $u$.
- We remain within $S$ for $2 k$ steps.


## Walks of Small Support

- How many walks are closed, starting at $u$ and stay within the set S?
- If a walk stays within the set $S$, then it is counted in the quadratic form of the submatrix $e_{u}^{T} A_{S}^{2 k} e_{u}$.
- We start our walk at $u$.
- We remain within $S$ for $2 k$ steps.
- We end at $u$.


## Walks of Small Support

- How many walks are closed, starting at $u$ and stay within the set S?
- If a walk stays within the set $S$, then it is counted in the quadratic form of the submatrix $e_{u}^{T} A_{S}^{2 k} e_{u}$.
- We start our walk at $u$.
- We remain within $S$ for $2 k$ steps.
- We end at $u$.
- This quadratic form is upper bounded by the top eigenvalue of $A_{S}, \lambda_{s}$.


| 0 | 1 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 | 0 |



| 0 | 1 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 | 0 |



| 0 | 1 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 | 0 |




| 0 | 1 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 | 0 |



We can count walks on this support using the submatrix $A_{S}$.

## Resolution

- The number of closed walks remaining on a set $S$ after $2 k$ steps is at most $\lambda_{S}^{2 k}$.
- Moreover, we know that for large $k, e_{v}^{T} A_{S}^{2 k} e_{v} \approx\left\langle\psi_{S}, e_{v}\right\rangle^{2} \lambda_{S}^{2 k}$.

Claim: To show that there are many more walks on $T$ than $S$, it is sufficient to show that $\lambda_{T}^{2 k} \gg \lambda_{S}^{2 k}$.

- If I find a set $T$ such that $\lambda_{T} \geq(1+\epsilon) \lambda_{\text {, then even if } \epsilon \text { is small, }}^{\text {the }}$ for large enough $k, \lambda_{T}^{2 k} \gg \lambda_{S}^{2 k}$.

Lemma A: There exists a set $T=S \cup\{v\}$ such that $\lambda_{T}>\lambda_{S}(1+$ $\left.\frac{c}{\left.|S|\right|^{5}}\right)$. Therefore, for $k \gg|S|^{5}, \lambda_{T}^{2 k} \gg \lambda_{S}^{2 k}$.

## How to increase eigenvalue?

- Lemma B: For any vertex $v \nsubseteq S$ that neighbors a vertex $u \in S$, the top eigenvalue of $T=S \cup\{v\}$ satisfies $\lambda_{T} \geq \lambda_{S}+\Omega\left(\psi_{S}(u)^{2}\right)$.
- Remark: As we are looking at a subset of a regular graph, we can extend the graph at any vertex which is not of maximal degree in $S$.
- Theorem C: For any connected graph of bounded degree, there is a vertex $u$ of non-maximal degree such that $\psi(u)=\Omega\left(n^{-\frac{5}{2}}\right)$.
- Note that we only need one vertex with non-maximal degree to have large value in $\psi$. Cioabă and Gregory give a lower bound on the minimum value in the principal eigenvector, but that bound is exponentially small.


## Example of the Lollipop



- The lollipop has an exponentially small value at the end of its tail, but vertices near the bulb still have polynomially large value.


## Example of the Lollipop



- The lollipop has an exponentially small value at the end of its tail, but vertices near the bulb still have polynomially large value.


## Result

- We know that for some vertex $t$, we have

$$
\psi_{S}(t) \geq 1 / \sqrt{|S|}
$$

- If we can bound the ratio

$$
\psi_{S}(u) / \psi_{S}(t)
$$

for this $t$, that is sufficient.

- Lemma C: There exists a $u$ of non-maximal degree for which

$$
\frac{\psi_{s}(u)}{\psi_{S}(t)}=\Omega\left(\frac{1}{D|\partial S|}\right)
$$

where $D$ is the diameter of the graph, and $|\partial S|$ is the number of vertices of non-maximal degree.

- Both these quantities are at most $|S|$, which translates into a bound of

$$
\psi_{S}(u) \geq 1 /|S|^{\frac{5}{2}}
$$

## Mangrove

- The worst case is when both the boundary and diameter are the order of $|S|$. In the below example, for all $u$ on the boundary $\psi(u)=\Theta\left(1 /|S|^{\frac{5}{2}}\right)$, which is the bound given by our work.



## Full Results

- Our full result bounds the number of eigenvalues in an interval.
- Theorem $\mathbf{A}$ (full): The number of eigenvalues of $A$ in the interval $\left[\left(1-\frac{\log \log n}{\log n}\right) \lambda_{2}, \lambda_{2}\right]$ is $O\left(\frac{n}{\log _{\kappa}^{1 / 5-o_{n}(1) n}}\right)$.
- For bipartite Ramanujan graphs, the number of eigenvalues in this interval is $\Omega\left(\frac{n}{\log ^{3 / 2} n}\right)$, meaning our result is tight except for potentially the exponent.


## Full Increase

Lemma A (full): For every connected subset of vertices $S$ of a regular graph there is a subset of vertices $T \supset S,|T|=2|S|$, such that

$$
\lambda_{1}\left(A_{T}\right) \geq \lambda_{1}\left(A_{S}\right)+\frac{c}{|S|^{4}}
$$

for some constant $c$.

- Method

1) Show $\exists u \in \partial S$ such that $\psi_{S}(u) \geq \frac{1}{|S|^{5 / 2}}$
2) Show that for a vertex $v \nsubseteq S$ adjacent to $u$,

$$
\lambda_{1}\left(A_{S U v}\right)=\lambda_{1}\left(A_{S}\right)+\Omega\left(\psi_{S}(u)^{2}\right) .
$$

Repeat this process $|S|$ times to achieve a set of size $2|S|$.

## Visualization of 2



## Visualization of 2



## Visualization of 2

## Random Walk Matrix

- We can encode the distribution of the random walk through its random walk matrix $W$, which is such that $W_{v u}$ is the probability of transitioning from node $u$ to node $v$.
- For a simple random walk, the probability of transitioning between two connected vertices $u$ and $v$ is the reciprocal of the degree of $u$.

$$
\left[\begin{array}{cccc}
0 & 1 / 2 & 1 / 3 & 0 \\
1 / 2 & 0 & 1 / 3 & 0 \\
1 / 2 & 1 / 2 & 0 & 1 \\
0 & 0 & 1 / 3 & 0
\end{array}\right]
$$

## Spectral Theory

The key thing about regular graphs is that their adjacency matrices are the same up to rescaling to the random walk matrix.


## Theorem

We now consider any random walk matrix $W$ of a graph with maximum degree $\Delta$, and the boundary of $S \partial S$.

Lemma C (full): For any connected subgraph $S$, there is a vertex $u \in \partial S$ such that $\psi_{S}(u) \geq \frac{1}{\Delta|S|^{2}} \psi_{S}(t)$ for any vertex $t \in S$.

All of our results generalize to the random walk matrix.

## Observations

- By the power method, $\lim _{r \rightarrow \infty} \frac{w_{S}^{r} 1_{s}}{\left\|w_{S}^{r} 1_{s}\right\|}$ approaches $\psi$. Therefore, $\lim _{r \rightarrow \infty} \frac{1_{S}^{T} W_{S}^{r} e_{u}}{1_{S}^{T} W_{S}^{r} e_{t}}=\frac{\psi(u)}{\psi(t)}$.
- $W_{S}^{r} e_{u}$ represents the random walk distribution for the walk remaining on $S$.
- $\frac{1_{S}^{T} W_{S}^{r} e_{u}}{1_{S}^{T} W_{S}^{r} e_{t}}$ is the ratio of the probabilities of walks starting at $u$ and $t$ remaining in our set for $r$ steps.
- The probability that we remain in the set does not change if we contract all the points directly outside the boundary to a single point $s$.


## Visualization

There's no difference in the probability we remain in the set if we contract all the points immediately outside the boundary to one point.


## Visualization

There's no difference in the probability we remain in the set if we contract all the points immediately outside the boundary to one point.


- If we know the walk reaches $t$ before it reaches $s$, and it takes $j$ steps to reach $t$, then the probability that it stays within $S$ is the probability a walk of length $r-j$ starting at $t$ stays within $S$.


## Observations

- If we know the walk reaches $t$ before it reaches $s$, and it takes $j$ steps to reach $t$, then the probability that it stays within $S$ is the probability a walk of length $r-j$ starting at $t$ stays within $S$.
- Specifically, if $Y_{j}$ is the event that the walk hits $t$ before $s$ AND hits $t$ for the first time at step $j$, then

$$
\mathbf{1}_{S}^{T} W_{S}^{r} e_{u} \geq \sum_{j=0}^{r} \operatorname{Pr}\left(Y_{j}\right) \mathbb{1}_{S}^{T} W_{S}^{r-j} e_{t} \geq \mathbf{1}_{S}^{T} W_{S}^{r} e_{t} \sum_{j=0}^{r} \operatorname{Pr}\left(Y_{j}\right)
$$

## Observations

- If we know the walk reaches $t$ before it reaches $s$, and it takes $j$ steps to reach $t$, then the probability that it stays within $S$ is the probability a walk of length $r-j$ starting at $t$ stays within $S$.
- Specifically, if $Y_{j}$ is the event that the walk hits $t$ before $s$ AND hits $t$ for the first time at step $j$, then

$$
\mathbf{1}_{S}^{T} W_{S}^{r} e_{u} \geq \sum_{j=0}^{r} \operatorname{Pr}\left(Y_{j}\right) \mathbb{1}_{S}^{T} W_{S}^{r-j} e_{t} \geq \mathbf{1}_{S}^{T} W_{S}^{r} e_{t} \sum_{j=0}^{r} \operatorname{Pr}\left(Y_{j}\right)
$$

- As the expected hitting time of $t$ is finite, $\lim _{r \rightarrow \infty}\left(\sum_{j=0}^{r} \operatorname{Pr}\left(Y_{j}\right)\right)$ is the probability that $t$ is hit before $s$.


## Visualization

A random walk of length $r$ conditioned on reaching $t$ before $s$ that reaches $t$ for the first time at step $j$ has the same probability of staying within the set as a random walk starting at $t$ of length $r-j$.


## Electric Flow

- This probability is equivalent to the voltage of $u$, denoted $V(u)$, in a flow from $s$ to $t$ where the voltages $V(t)=1, V(s)=0$ [e.g. Bollobás].


## Electric Flow

- This probability is equivalent to the voltage of $u$, denoted $V(u)$, in a flow from $s$ to $t$ where the voltages $V(t)=1, V(s)=0$ [e.g. Bollobás].
- By Ohm's law, the total current from $s$ to $t$ is at least $1 / \operatorname{dist}(s, t)$. Because $s$ has at most $|\mathrm{S}| \Delta$ neighbors, there is some neighbor of $s$ such that current through this vertex is at least $1 / \Delta|S|^{2}$. Therefore, the voltage of this vertex is at least $1 / \Delta|S|^{2}$, as is the probability of reaching $t$ before $s$.


## Electric Flow

- This probability is equivalent to the voltage of $u$, denoted $V(u)$, in a flow from $s$ to $t$ where the voltages $V(t)=1, V(s)=0$ [e.g. Bollobás].
- By Ohm's law, the total current from $s$ to $t$ is at least $1 / \operatorname{dist}(s, t)$. Because $s$ has at most $|\mathrm{S}| \Delta$ neighbors, there is some neighbor of $s$ such that current through this vertex is at least $1 / \Delta|S|^{2}$. Therefore, the voltage of this vertex is at least $1 / \Delta|S|^{2}$, as is the probability of reaching $t$ before $s$.
- For some vertex $u \in \partial S, \frac{\psi_{s}(u)}{\psi_{S}(t)} \geq \frac{1}{\Delta|S|^{2}}$. As we can assume $\psi_{S}(t) \geq$ $1 / \sqrt{S}$,

$$
\psi_{S}(u) \geq 1 /\left(\Delta|S|^{5 / 2}\right) .
$$

## Electric Flow

We interpret this probability as an electrical current between $s$ and $t$. There must be one vertex adjacent to $s$ that receives a large current flow and therefore has high eigenvector value. We make this our $u$.


## Questions

- Is $\Omega\left(k^{1 / 5}\right)$ tight for the typical support of a walk on a bounded degree graph.
- Is there an $\epsilon>0$ such that the random walk matrix of every graph has second eigenvalue multiplicity $O\left(n^{1-\epsilon}\right)$ ?
- The most we know is that there are graphs with second eigenvalue multiplicity $\Omega\left(n^{1 / 3}\right)$.


## Thank you!

