
A New Algorithm for the Robust
Semi-Random Independent Set

Problem
Theo McKenzie

UC Berkeley

Joint with Hermish Mehta (UC Berkeley) and
Luca Trevisan (Bocconi University)

Maximum Independent Set Problem

• Given a graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 what is the maximum size independent set? The decision problem of whether there
is an independent set of size at least 𝑘𝑘 is on Richard Karp’s original list of 21 NP complete problems.

Maximum Independent Set Problem

• Given a graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 what is the maximum size independent set? The decision problem of whether there
is an independent set of size at least 𝑘𝑘 is on Richard Karp’s original list of 21 NP complete problems.

• [Håstad ‘96] If there is an 𝑛𝑛1−𝜖𝜖 approximation algorithm for constant 𝜖𝜖 > 0 in polynomial time, then P=NP.

Maximum Independent Set Problem

• Given a graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 what is the maximum size independent set? The decision problem of whether there
is an independent set of size at least 𝑘𝑘 is on Richard Karp’s original list of 21 NP complete problems.

• [Håstad ‘96] If there is an 𝑛𝑛1−𝜖𝜖 approximation algorithm for constant 𝜖𝜖 > 0 in polynomial time, then P=NP.

• This means that selecting a single vertex is not far from the best solution in polynomial time!

Average Case Analysis

• However, this may be focusing on the idiosyncrasies of unlikely
graphical models. Can we instead solve an “average” case?

Average Case Analysis

• However, this may be focusing on the idiosyncrasies of unlikely
graphical models. Can we instead solve an “average” case?

• For example if each edge exists with probability p (an Erdös-Rényi
𝐺𝐺(𝑛𝑛, 𝑝𝑝) random graph) can I recover the maximal independent set?

Average Case Analysis Continued

• By doing a simple random greedy algorithm, with high probability we
obtain a log 1

1−𝑝𝑝
𝑛𝑛 sized independent set.

Average Case Analysis Continued

• By doing a simple random greedy algorithm, with high probability we
obtain a log 1

1−𝑝𝑝
𝑛𝑛 sized independent set.

• However, with high probability, the maximum independent set is of
size 2log 1

1−𝑝𝑝
𝑛𝑛.

Average Case Analysis Continued

• By doing a simple random greedy algorithm, with high probability we
obtain a log 1

1−𝑝𝑝
𝑛𝑛 sized independent set.

• However, with high probability, the maximum independent set is of
size 2log 1

1−𝑝𝑝
𝑛𝑛.

• As this is the best known polynomial time algorithm, we can get a
constant factor approximation, but not exact recovery.

Planted Independent Set

• We have more success when we plant an independent set within our
random model.

Planted Independent Set

• We have more success when we plant an independent set within our
random model.

• Specifically, we create a graph according to the 𝐺𝐺 𝑛𝑛, 𝑝𝑝 distribution,
then delete all edges within a set 𝑆𝑆.

Planted Independent Set

• We have more success when we plant an independent set within our
random model.

• Specifically, we create a graph according to the 𝐺𝐺 𝑛𝑛, 𝑝𝑝 distribution,
then delete all edges within a set 𝑆𝑆.

Planted Independent Set

• We have more success when we plant an independent set within our
random model.

• Specifically, we create a graph according to the 𝐺𝐺 𝑛𝑛, 𝑝𝑝 distribution,
then delete all edges within a set 𝑆𝑆.

Planted Independent Set

• We have more success when we plant an independent set within our
random model.

• Specifically, we create a graph according to the 𝐺𝐺 𝑛𝑛, 𝑝𝑝 distribution,
then delete all edges within a set 𝑆𝑆.

• [Alon-Krivelevich-Sudakov ‘98] If the planted set is of size Ω(𝑛𝑛)
and 𝑝𝑝 = 1/2, then we can recover the set in polynomial time w.h.p.

Have We Assumed Too Much?

• Feige and Kilian believed that full recovery was possible without
requiring the randomness of all non independent set edges. The only
randomness we need is of edges adjacent to the planted independent
set.

• Therefore they created a more general model.

Feige and Kilian Model

• Given a set 𝑆𝑆 ⊂ 𝑉𝑉, to all vertex pairs of the form 𝑢𝑢, 𝑣𝑣 ∈ 𝑆𝑆 × 𝑆𝑆, we
add an edge with probability 𝑝𝑝.

Feige and Kilian Model

• Given a set 𝑆𝑆 ⊂ 𝑉𝑉, to all vertex pairs of the form 𝑢𝑢, 𝑣𝑣 ∈ 𝑆𝑆 × 𝑆𝑆, we
add an edge with probability 𝑝𝑝.

• An adversary then adds edges to the model, as long as 𝑆𝑆 remains an
independent set.

Feige and Kilian Result

• [Feige and Kilian ‘01]
• If 𝑆𝑆 = 𝛼𝛼𝛼𝛼 and 𝑝𝑝 > (1 + 𝜖𝜖 ln 𝑛𝑛)/(𝛼𝛼𝛼𝛼), for constants 𝜖𝜖,𝛼𝛼 > 0, w.h.p. it is

possible to find an independent set of size at least 𝛼𝛼𝛼𝛼 utilizing a randomized
polynomial time algorithm.

Feige and Kilian Result

• [Feige and Kilian ‘01]
• If 𝑆𝑆 = 𝛼𝛼𝛼𝛼 and 𝑝𝑝 > (1 + 𝜖𝜖 ln 𝑛𝑛)/(𝛼𝛼𝛼𝛼), for constants 𝜖𝜖,𝛼𝛼 > 0, w.h.p. it is

possible to find an independent set of size at least 𝛼𝛼𝛼𝛼 utilizing a randomized
polynomial time algorithm.

• Moreover if 𝑝𝑝 < (1 − 𝜖𝜖 ln 𝑛𝑛)/(𝛼𝛼𝛼𝛼), the problem is not solvable in
polynomial time unless NP⊂BPP.

Feige and Kilian Result

• [Feige and Kilian ‘01]
• If 𝑆𝑆 = 𝛼𝛼𝛼𝛼 and 𝑝𝑝 > (1 + 𝜖𝜖 ln 𝑛𝑛)/(𝛼𝛼𝛼𝛼), for constants 𝜖𝜖,𝛼𝛼 > 0, w.h.p. it is

possible to find an independent set of size at least 𝛼𝛼𝛼𝛼 utilizing a randomized
polynomial time algorithm.

• Moreover if 𝑝𝑝 < (1 − 𝜖𝜖 ln 𝑛𝑛)/(𝛼𝛼𝛼𝛼), the problem is not solvable in
polynomial time unless NP⊂BPP.

• Despite improvements in weaker models, until now there has been
no improvement for the full Feige and Kilian model.

Our Results

• [Our First Result] Call 𝑆𝑆 = 𝑘𝑘. ∃𝑐𝑐1 > 0 such that if 𝑘𝑘 > 𝑐𝑐1
𝑛𝑛2/3

𝑝𝑝1/3, w.h.p.
it is possible to find an independent set of size at least .99𝑘𝑘 utilizing a
deterministic polynomial time algorithm.

Our Results

• [Our First Result] Call 𝑆𝑆 = 𝑘𝑘. ∃𝑐𝑐1 > 0 such that if 𝑘𝑘 > 𝑐𝑐1
𝑛𝑛2/3

𝑝𝑝1/3, w.h.p.
it is possible to find an independent set of size at least .99𝑘𝑘 utilizing a
deterministic polynomial time algorithm.

• [Second Result] ∃𝑐𝑐2 > 0 such that if 𝑘𝑘 > 𝑐𝑐2
𝑛𝑛2/3

𝑝𝑝
, w.h.p. this

independent set can be increased to an independent set of size at
least 𝑘𝑘 (also deterministic polynomial time).

Comparison of Results

• For full recovery with 𝑘𝑘 = 𝛼𝛼𝛼𝛼, the Feige Kilian algorithm works
for 𝑝𝑝 = Ω(ln 𝑛𝑛/𝑛𝑛) while ours only works for 𝑝𝑝 = Ω(1/𝑛𝑛1/3).

Comparison of Results

• For full recovery with 𝑘𝑘 = 𝛼𝛼𝛼𝛼, the Feige Kilian algorithm works
for 𝑝𝑝 = Ω(ln 𝑛𝑛/𝑛𝑛) while ours only works for 𝑝𝑝 = Ω(1/𝑛𝑛1/3).

• For 𝑘𝑘 = 𝛼𝛼𝛼𝛼, our approximation algorithm works for 𝑝𝑝 = Ω(1/𝑛𝑛).

Comparison of Results

• For full recovery with 𝑘𝑘 = 𝛼𝛼𝛼𝛼, the Feige Kilian algorithm works
for 𝑝𝑝 = Ω(ln 𝑛𝑛/𝑛𝑛) while ours only works for 𝑝𝑝 = Ω(1/𝑛𝑛1/3).

• For 𝑘𝑘 = 𝛼𝛼𝛼𝛼, our approximation algorithm works for 𝑝𝑝 = Ω(1/𝑛𝑛).

• For 𝑘𝑘 = 𝑜𝑜(𝑛𝑛) all of our results are new. For example, for constant 𝑝𝑝,
we only require 𝑘𝑘 = Ω(𝑛𝑛2/3) for approximation and recovery.

“Crude” SDPs

• Semirandom Unique Games [Kolla-Makarychev-Makarychev ‘11]
• Semirandom Small Set Expansion [Makarychev-Makarychev-

Vijayaraghavan ‘12]

“Crude” SDPs
[Feige-Krauthgamer ‘00] Lovász Theta
Function can be used to solve the
“traditional” planted clique problem.

“Crude” SDPs

• The “hidden” solution is to place all
vertices in 𝑆𝑆 at the same vector 𝑥𝑥 where
𝑥𝑥 = 1/ 𝑘𝑘.

[Feige-Krauthgamer ‘00] Lovász Theta
Function can be used to solve the
“traditional” planted clique problem.

“Crude” SDPs

• The “hidden” solution is to place all
vertices in 𝑆𝑆 at the same vector 𝑥𝑥 where
𝑥𝑥 = 1/ 𝑘𝑘.

• However in the Feige and Kilian model,
the adversary can place in 𝑉𝑉 − 𝑆𝑆 a graph
that cannot be well approximated, so the
optimal solution “ignores” the planted
set and sends it to 0.

[Feige-Krauthgamer ‘00] Lovász Theta
Function can be used to solve the
“traditional” planted clique problem.

“Crude” SDPs

• The “hidden” solution is to place all
vertices in 𝑆𝑆 at the same vector 𝑥𝑥 where
𝑥𝑥 = 1/ 𝑘𝑘.

• However in the Feige and Kilian model,
the adversary can place in 𝑉𝑉 − 𝑆𝑆 a graph
that cannot be well approximated, so the
optimal solution “ignores” the planted
set and sends it to 0.

[Feige-Krauthgamer ‘00] Lovász Theta
Function can be used to solve the
“traditional” planted clique problem.

“Crude” SDP

“Crude” SDPs

• The “hidden” solution is to place all
vertices in 𝑆𝑆 at the same vector 𝑥𝑥 where
𝑥𝑥 = 1/ 𝑘𝑘.

• However in the Feige and Kilian model,
the adversary can place in 𝑉𝑉 − 𝑆𝑆 a graph
that cannot be well approximated, so the
optimal solution “ignores” the planted
set and sends it to 0.

• We sacrifice our program being a direct
relaxation but maintain information
about all vertices.

[Feige-Krauthgamer ‘00] Lovász Theta
Function can be used to solve the
“traditional” planted clique problem.

“Crude” SDP

“Crude” SDPs

• The “hidden” solution is to place all
vertices in 𝑆𝑆 at the same vector 𝑥𝑥 where
𝑥𝑥 = 1/ 𝑘𝑘.

• However in the Feige and Kilian model,
the adversary can place in 𝑉𝑉 − 𝑆𝑆 a graph
that cannot be well approximated, so the
optimal solution “ignores” the planted
set and sends it to 0.

• We sacrifice our program being a direct
relaxation but maintain information
about all vertices.

• Our goal is to show that the planted set
will form a cluster separated from all
other vertices.

[Feige-Krauthgamer ‘00] Lovász Theta
Function can be used to solve the
“traditional” planted clique problem.

“Crude” SDP

Comparison of Optimal Solutions

• We compare our optimal solution to an altered solution, where we
take all vectors corresponding to vertices of our planted set and set
them to a vector 𝑒𝑒 orthogonal to all other vectors.

Analysis of Clustering

Analysis of Clustering

• We compare our optimal solution to an altered solution, where we
take all vectors corresponding to vertices of our planted set and set
them to a vector 𝑒𝑒 orthogonal to all other vectors.

• Comparing where these two cost functions differ, for the solution to
be optimal,

�
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆𝑆

⟨𝑥𝑥𝑢𝑢∗ , 𝑥𝑥𝑣𝑣∗⟩ + 2 �
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆̅𝑆

⟨𝑥𝑥𝑢𝑢∗ , 𝑥𝑥𝑣𝑣∗⟩ ≥ 𝑘𝑘2

where 𝑥𝑥𝑢𝑢∗ is the vector corresponding to 𝑢𝑢 in the optimal solution.

Analysis of Clustering

• We compare our optimal solution to an altered solution, where we
take all vectors corresponding to vertices of our planted set and set
them to a vector 𝑒𝑒 orthogonal to all other vectors.

• Comparing where these two cost functions differ, for the solution to
be optimal,

�
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆𝑆

⟨𝑥𝑥𝑢𝑢∗ , 𝑥𝑥𝑣𝑣∗⟩ + 2 �
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆̅𝑆

⟨𝑥𝑥𝑢𝑢∗ , 𝑥𝑥𝑣𝑣∗⟩ ≥ 𝑘𝑘2

where 𝑥𝑥𝑢𝑢∗ is the vector corresponding to 𝑢𝑢 in the optimal solution.
• To show that the vectors corresponding to 𝑆𝑆 cluster, we bound the

second sum.

Analysis of Clustering

• We compare our optimal solution to an altered solution, where we
take all vectors corresponding to vertices of our planted set and set
them to a vector 𝑒𝑒 orthogonal to all other vectors.

• Comparing where these two cost functions differ, for the solution to
be optimal,

�
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆𝑆

⟨𝑥𝑥𝑢𝑢∗ , 𝑥𝑥𝑣𝑣∗⟩ + 2 �
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆̅𝑆

⟨𝑥𝑥𝑢𝑢∗ , 𝑥𝑥𝑣𝑣∗⟩ ≥ 𝑘𝑘2

where 𝑥𝑥𝑢𝑢∗ is the vector corresponding to 𝑢𝑢 in the optimal solution.
• To show that the vectors corresponding to 𝑆𝑆 cluster, we bound the

second sum.

This is the key advantage to crude
SDPs. Regardless of the configuration,
we can deduce information about 𝑆𝑆.

Optimal vs. Adjusted Solutions

Bounding Size of Sum

• We wish to show that 2 ∑𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆̅𝑆⟨𝑥𝑥𝑢𝑢∗ , 𝑥𝑥𝑣𝑣∗⟩ is small.

Bounding Size of Sum

• We wish to show that 2 ∑𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆̅𝑆⟨𝑥𝑥𝑢𝑢∗ , 𝑥𝑥𝑣𝑣∗⟩ is small.
• To do this, we show that the inner product of the randomly added

edges approximates the inner product of the entire barrier. If 𝐹𝐹 is the
set of randomly added edges, we have

max �
𝑢𝑢,𝑣𝑣∈𝑆𝑆× ̅𝑆𝑆

⟨𝑥𝑥𝑢𝑢 , 𝑥𝑥𝑣𝑣⟩ = max �
𝑢𝑢,𝑣𝑣∈𝑆𝑆× ̅𝑆𝑆

⟨𝑥𝑥𝑢𝑢, 𝑥𝑥𝑣𝑣⟩ −
1
𝑝𝑝 �

𝑢𝑢,𝑣𝑣∈𝐹𝐹

⟨𝑥𝑥𝑢𝑢 , 𝑥𝑥𝑣𝑣⟩

Grothendieck Inequality

• As these are unit vectors, we can use Grothendieck’s inequality to
discretize our vectors.

max �
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆̅𝑆

⟨𝑥𝑥𝑢𝑢, 𝑥𝑥𝑣𝑣⟩ −
1
𝑝𝑝 �

𝑢𝑢,𝑣𝑣∈𝐹𝐹

⟨𝑥𝑥𝑢𝑢, 𝑥𝑥𝑣𝑣⟩

≤ 𝑐𝑐 max
𝑥𝑥1,…,𝑥𝑥𝑛𝑛,𝑦𝑦1,…,𝑦𝑦𝑛𝑛∈ ±1 2𝑛𝑛

�
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆̅𝑆

𝑥𝑥𝑢𝑢𝑦𝑦𝑣𝑣 −
1
𝑝𝑝 �

𝑢𝑢,𝑣𝑣∈𝐹𝐹

𝑥𝑥𝑢𝑢𝑦𝑦𝑣𝑣

where 𝑐𝑐 is a constant less than 2.

• By union bounding over the 22𝑛𝑛 possible choices of the 𝑥𝑥𝑢𝑢 and 𝑦𝑦𝑢𝑢 for
each vertex and a standard Chernoff bound, we show that with high
probability,

max
𝑥𝑥1,…,𝑥𝑥𝑛𝑛,𝑦𝑦1,…,𝑦𝑦𝑛𝑛∈ ±1 2𝑛𝑛

�
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆̅𝑆

𝑥𝑥𝑢𝑢𝑦𝑦𝑣𝑣 −
1
𝑝𝑝 �

𝑢𝑢,𝑣𝑣∈𝐹𝐹

𝑥𝑥𝑢𝑢𝑦𝑦𝑣𝑣 = 𝑂𝑂
𝑛𝑛 𝑘𝑘
𝑝𝑝

• By union bounding over the 22𝑛𝑛 possible choices of the 𝑥𝑥𝑢𝑢 and 𝑦𝑦𝑢𝑢 for
each vertex and a standard Chernoff bound, we show that with high
probability,

max
𝑥𝑥1,…,𝑥𝑥𝑛𝑛,𝑦𝑦1,…,𝑦𝑦𝑛𝑛∈ ±1 2𝑛𝑛

�
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆̅𝑆

𝑥𝑥𝑢𝑢𝑦𝑦𝑣𝑣 −
1
𝑝𝑝 �

𝑢𝑢,𝑣𝑣∈𝐹𝐹

𝑥𝑥𝑢𝑢𝑦𝑦𝑣𝑣 = 𝑂𝑂
𝑛𝑛 𝑘𝑘
𝑝𝑝

• As the second sum is 0, we have that with high probability, over any
configuration of vectors,

�
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆̅𝑆

⟨𝑥𝑥𝑢𝑢, 𝑥𝑥𝑣𝑣⟩ = 𝑂𝑂
𝑛𝑛 𝑘𝑘
𝑝𝑝

�
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆𝑆

⟨𝑥𝑥𝑢𝑢∗ , 𝑥𝑥𝑣𝑣∗⟩ + 2 �
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆̅𝑆

⟨𝑥𝑥𝑢𝑢∗ , 𝑥𝑥𝑣𝑣∗⟩ ≥ 𝑘𝑘2

�
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆𝑆

⟨𝑥𝑥𝑢𝑢∗ , 𝑥𝑥𝑣𝑣∗⟩ + 2 �
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆̅𝑆

⟨𝑥𝑥𝑢𝑢∗ , 𝑥𝑥𝑣𝑣∗⟩ ≥ 𝑘𝑘2

• Now knowing that the second sum is 𝑂𝑂 𝑛𝑛 𝑘𝑘
𝑝𝑝

, the average inner

product between vertices of 𝑆𝑆 is 1−𝑂𝑂 𝑛𝑛
𝑘𝑘3/2 𝑝𝑝

.

�
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆𝑆

⟨𝑥𝑥𝑢𝑢∗ , 𝑥𝑥𝑣𝑣∗⟩ + 2 �
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆̅𝑆

⟨𝑥𝑥𝑢𝑢∗ , 𝑥𝑥𝑣𝑣∗⟩ ≥ 𝑘𝑘2

• Now knowing that the second sum is 𝑂𝑂 𝑛𝑛 𝑘𝑘
𝑝𝑝

, the average inner

product between vertices of 𝑆𝑆 is 1−𝑂𝑂 𝑛𝑛
𝑘𝑘3/2 𝑝𝑝

.

• Using a Markov inequality, if 𝑘𝑘 ≥ c1
𝑛𝑛2/3

𝑝𝑝1/3, ∃𝑢𝑢 ∈ 𝑆𝑆 such that
.99𝑘𝑘 vertices of 𝑆𝑆 have an inner product > 1/ 2 with 𝑢𝑢.

�
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆𝑆

⟨𝑥𝑥𝑢𝑢∗ , 𝑥𝑥𝑣𝑣∗⟩ + 2 �
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆̅𝑆

⟨𝑥𝑥𝑢𝑢∗ , 𝑥𝑥𝑣𝑣∗⟩ ≥ 𝑘𝑘2

• Now knowing that the second sum is 𝑂𝑂 𝑛𝑛 𝑘𝑘
𝑝𝑝

, the average inner

product between vertices of 𝑆𝑆 is 1−𝑂𝑂 𝑛𝑛
𝑘𝑘3/2 𝑝𝑝

.

• Using a Markov inequality, if 𝑘𝑘 ≥ c1
𝑛𝑛2/3

𝑝𝑝1/3, ∃𝑢𝑢 ∈ 𝑆𝑆 such that
.99𝑘𝑘 vertices of 𝑆𝑆 have an inner product > 1/ 2 with 𝑢𝑢.

• None of the vectors in this cluster are orthogonal, so these vertices
form an independent set.

�
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆𝑆

⟨𝑥𝑥𝑢𝑢∗ , 𝑥𝑥𝑣𝑣∗⟩ + 2 �
𝑢𝑢,𝑣𝑣∈𝑆𝑆×𝑆̅𝑆

⟨𝑥𝑥𝑢𝑢∗ , 𝑥𝑥𝑣𝑣∗⟩ ≥ 𝑘𝑘2

• Now knowing that the second sum is 𝑂𝑂 𝑛𝑛 𝑘𝑘
𝑝𝑝

, the average inner

product between vertices of 𝑆𝑆 is 1−𝑂𝑂 𝑛𝑛
𝑘𝑘3/2 𝑝𝑝

.

• Using a Markov inequality, if 𝑘𝑘 ≥ c1
𝑛𝑛2/3

𝑝𝑝1/3, ∃𝑢𝑢 ∈ 𝑆𝑆 such that
.99𝑘𝑘 vertices of 𝑆𝑆 have an inner product > 1/ 2 with 𝑢𝑢.

• None of the vectors in this cluster are orthogonal, so these vertices
form an independent set.

• If we run our SDP then take the list of clusters around each vertex,
each of these is independent and the one corresponding to 𝑢𝑢 is of
size .99𝑘𝑘.

Exact Recovery

• With the slightly stronger condition that 𝑘𝑘 = Ω 𝑛𝑛2/3

𝑝𝑝
we add a

greedy step: for each cluster on our list, add all vertices with no edges
to the cluster.

Exact Recovery

• With the slightly stronger condition that 𝑘𝑘 = Ω 𝑛𝑛2/3

𝑝𝑝
we add a

greedy step: for each cluster on our list, add all vertices with no edges
to the cluster.

• With high probability, no point in 𝑉𝑉\𝑆𝑆 has less than .01𝑘𝑘 neighbors in
𝑆𝑆, so 𝑢𝑢’s cluster will become 𝑆𝑆 with this greedy step.

Exact Recovery

• With the slightly stronger condition that 𝑘𝑘 = Ω 𝑛𝑛2/3

𝑝𝑝
we add a

greedy step: for each cluster on our list, add all vertices with no edges
to the cluster.

• With high probability, no point in 𝑉𝑉\𝑆𝑆 has less than .01𝑘𝑘 neighbors in
𝑆𝑆, so 𝑢𝑢’s cluster will become 𝑆𝑆 with this greedy step.

• Remember Feige and Kilian’s result that when 𝑝𝑝 < (1 − 𝜖𝜖 ln 𝑛𝑛)/𝑘𝑘,
the problem is not solvable in polynomial time unless NP⊂BPP.
Therefore we do not hope for exact recovery under the full generality
of the original constraints.

Recovery of Original Set

• If we are given a random vertex of 𝑆𝑆, we can analyze our clusters to
recover 𝑆𝑆 exactly.

Further Questions

• Is there a matching hardness result for the size of 𝑘𝑘?
• [Steinhardt ‘17] For 𝑝𝑝 = 1

2
we must have 𝑘𝑘 = Ω 𝑛𝑛 to solve in poly time.

• Can we use some of the extra partitioning steps of the Feige and
Kilian algorithm to further improve the analysis?

Thank you!

• Thank you to the NSF, Ford Foundation and UC Berkeley for funding
this research and my travel.

	A New Algorithm for the Robust Semi-Random Independent Set Problem
	Maximum Independent Set Problem
	Maximum Independent Set Problem
	Maximum Independent Set Problem
	Average Case Analysis
	Average Case Analysis
	Average Case Analysis Continued
	Average Case Analysis Continued
	Average Case Analysis Continued
	Planted Independent Set
	Planted Independent Set
	Planted Independent Set
	Planted Independent Set
	Planted Independent Set
	Have We Assumed Too Much?
	Feige and Kilian Model
	Feige and Kilian Model
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Feige and Kilian Result
	Feige and Kilian Result
	Feige and Kilian Result
	Our Results
	Our Results
	Comparison of Results
	Comparison of Results
	Comparison of Results
	“Crude” SDPs
	“Crude” SDPs
	“Crude” SDPs
	“Crude” SDPs
	“Crude” SDPs
	“Crude” SDPs
	“Crude” SDPs
	Comparison of Optimal Solutions
	Analysis of Clustering
	Analysis of Clustering
	Analysis of Clustering
	Analysis of Clustering
	Optimal vs. Adjusted Solutions
	Bounding Size of Sum
	Bounding Size of Sum
	Grothendieck Inequality
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Exact Recovery
	Exact Recovery
	Exact Recovery
	Recovery of Original Set
	Further Questions
	Thank you!

