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• Given a graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 what is the maximum size independent set? The decision problem of whether there 
is an independent set of size at least 𝑘𝑘 is on Richard Karp’s original list of 21 NP complete problems.

• [Håstad ‘96] If there is an 𝑛𝑛1−𝜖𝜖 approximation algorithm for constant 𝜖𝜖 > 0 in polynomial time, then P=NP.

• This means that selecting a single vertex is not far from the best solution in polynomial time!
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• However, this may be focusing on the idiosyncrasies of unlikely 
graphical models. Can we instead solve an “average” case?

• For example if each edge exists with probability p (an Erdös-Rényi 
𝐺𝐺(𝑛𝑛, 𝑝𝑝) random graph) can I recover the maximal independent set?
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Average Case Analysis Continued

• By doing a simple random greedy algorithm, with high probability we 
obtain a log 1

1−𝑝𝑝
𝑛𝑛 sized independent set.

• However, with high probability, the maximum independent set is of 
size 2log 1

1−𝑝𝑝
𝑛𝑛.

• As this is the best known polynomial time algorithm, we can get a 
constant factor approximation, but not exact recovery.
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Planted Independent Set

• We have more success when we plant an independent set within our 
random model.

• Specifically, we create a graph according to the 𝐺𝐺 𝑛𝑛, 𝑝𝑝 distribution, 
then delete all edges within a set 𝑆𝑆. 

• [Alon-Krivelevich-Sudakov ‘98] If the planted set is of size Ω( 𝑛𝑛)
and 𝑝𝑝 = 1/2, then we can recover the set in polynomial time w.h.p.



Have We Assumed Too Much?

• Feige and Kilian believed that full recovery was possible without 
requiring the randomness of all non independent set edges. The only 
randomness we need is of edges adjacent to the planted independent 
set.

• Therefore they created a more general model.
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• Given a set 𝑆𝑆 ⊂ 𝑉𝑉, to all vertex pairs of the form 𝑢𝑢, 𝑣𝑣 ∈ 𝑆𝑆 × 𝑆𝑆, we 
add an edge with probability 𝑝𝑝.

• An adversary then adds edges to the model, as long as 𝑆𝑆 remains an 
independent set.
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possible to find an independent set of size at least 𝛼𝛼𝛼𝛼 utilizing a randomized 
polynomial time algorithm.

• Moreover if 𝑝𝑝 < ( 1 − 𝜖𝜖 ln 𝑛𝑛)/(𝛼𝛼𝛼𝛼), the problem is not solvable in 
polynomial time unless NP⊂BPP.

• Despite improvements in weaker models, until now there has been 
no improvement for the full Feige and Kilian model.
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𝑝𝑝1/3, w.h.p. 
it is possible to find an independent set of size at least .99𝑘𝑘 utilizing a 
deterministic polynomial time algorithm.

• [Second Result] ∃𝑐𝑐2 > 0 such that if 𝑘𝑘 > 𝑐𝑐2
𝑛𝑛2/3

𝑝𝑝
, w.h.p. this 

independent set can be increased to an independent set of size at 
least 𝑘𝑘 (also deterministic polynomial time).
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• For full recovery with 𝑘𝑘 = 𝛼𝛼𝛼𝛼, the Feige Kilian algorithm works 
for 𝑝𝑝 = Ω(ln 𝑛𝑛/𝑛𝑛) while ours only works for 𝑝𝑝 = Ω(1/𝑛𝑛1/3).

• For 𝑘𝑘 = 𝛼𝛼𝛼𝛼, our approximation algorithm works for 𝑝𝑝 = Ω(1/𝑛𝑛). 

• For 𝑘𝑘 = 𝑜𝑜(𝑛𝑛) all of our results are new. For example, for constant 𝑝𝑝, 
we only require 𝑘𝑘 = Ω(𝑛𝑛2/3) for approximation and recovery. 



“Crude” SDPs

• Semirandom Unique Games [Kolla-Makarychev-Makarychev ‘11]
• Semirandom Small Set Expansion [Makarychev-Makarychev-

Vijayaraghavan ‘12]
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• The “hidden” solution is to place all 
vertices in 𝑆𝑆 at the same vector 𝑥𝑥 where 
𝑥𝑥 = 1/ 𝑘𝑘.

• However in the Feige and Kilian model, 
the adversary can place in 𝑉𝑉 − 𝑆𝑆 a graph 
that cannot be well approximated, so the 
optimal solution “ignores” the planted 
set and sends it to 0.

• We sacrifice our program being a direct 
relaxation but maintain information 
about all vertices.

• Our goal is to show that the planted set 
will form a cluster separated from all 
other vertices.

[Feige-Krauthgamer ‘00] Lovász Theta 
Function can be used to solve the 
“traditional” planted clique problem.

“Crude” SDP
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• We compare our optimal solution to an altered solution, where we 
take all vectors corresponding to vertices of our planted set and set 
them to a vector 𝑒𝑒 orthogonal to all other vectors.
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where 𝑥𝑥𝑢𝑢∗ is the vector corresponding to 𝑢𝑢 in the optimal solution.
• To show that the vectors corresponding to 𝑆𝑆 cluster, we bound the 

second sum.

This is the key advantage to crude 
SDPs. Regardless of the configuration, 
we can deduce information about 𝑆𝑆.
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edges approximates the inner product of the entire barrier. If 𝐹𝐹 is the 
set of randomly added edges, we have
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Grothendieck Inequality

• As these are unit vectors, we can use Grothendieck’s inequality to 
discretize our vectors.
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where 𝑐𝑐 is a constant less than 2.
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• Using a Markov inequality, if 𝑘𝑘 ≥ c1
𝑛𝑛2/3

𝑝𝑝1/3, ∃𝑢𝑢 ∈ 𝑆𝑆 such that
.99𝑘𝑘 vertices of 𝑆𝑆 have an inner product > 1/ 2 with 𝑢𝑢.
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product between vertices of 𝑆𝑆 is 1−𝑂𝑂 𝑛𝑛
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• Using a Markov inequality, if 𝑘𝑘 ≥ c1
𝑛𝑛2/3

𝑝𝑝1/3, ∃𝑢𝑢 ∈ 𝑆𝑆 such that
.99𝑘𝑘 vertices of 𝑆𝑆 have an inner product > 1/ 2 with 𝑢𝑢.

• None of the vectors in this cluster are orthogonal, so these vertices 
form an independent set.

• If we run our SDP then take the list of clusters around each vertex, 
each of these is independent and the one corresponding to 𝑢𝑢 is of 
size .99𝑘𝑘.
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Exact Recovery

• With the slightly stronger condition that 𝑘𝑘 = Ω 𝑛𝑛2/3

𝑝𝑝
we add a 

greedy step: for each cluster on our list, add all vertices with no edges 
to the cluster.

• With high probability, no point in 𝑉𝑉\𝑆𝑆 has less than .01𝑘𝑘 neighbors in 
𝑆𝑆, so 𝑢𝑢’s cluster will become 𝑆𝑆 with this greedy step.

• Remember Feige and Kilian’s result that when 𝑝𝑝 < ( 1 − 𝜖𝜖 ln 𝑛𝑛)/𝑘𝑘, 
the problem is not solvable in polynomial time unless NP⊂BPP. 
Therefore we do not hope for exact recovery under the full generality 
of the original constraints.



Recovery of Original Set

• If we are given a random vertex of 𝑆𝑆, we can analyze our clusters to 
recover 𝑆𝑆 exactly.



Further Questions

• Is there a matching hardness result for the size of 𝑘𝑘?
• [Steinhardt ‘17] For 𝑝𝑝 = 1

2
we must have 𝑘𝑘 = Ω 𝑛𝑛 to solve in poly time.

• Can we use some of the extra partitioning steps of the Feige and 
Kilian algorithm to further improve the analysis?



Thank you!

• Thank you to the NSF, Ford Foundation and UC Berkeley for funding 
this research and my travel.
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